Equivalence of Definitions of Matroid Rank Axioms

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ be a finite set.

Let $\rho : \powerset S \to \Z$ be a mapping from the power set of $S$ to the integers.


The following statements are equivalent:

Condition 1

$\rho$ satisfies formulation 1 of the rank axioms:

\((\text R 1)\)   $:$   \(\ds \map \rho \O = 0 \)      
\((\text R 2)\)   $:$     \(\ds \forall X \in \powerset S \land y \in S:\) \(\ds \map \rho X \le \map \rho {X \cup \set y} \le \map \rho X + 1 \)      
\((\text R 3)\)   $:$     \(\ds \forall X \in \powerset S \land y, z \in S:\) \(\ds \map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X \implies \map \rho {X \cup \set y \cup \set z} = \map \rho X \)      


Condition 2

$\rho$ satisfies formulation 2 of the rank axioms:

\((\text R 4)\)   $:$     \(\ds \forall X \in \powerset S:\) \(\ds 0 \le \map \rho X \le \size X \)      
\((\text R 5)\)   $:$     \(\ds \forall X, Y \in \powerset S:\) \(\ds X \subseteq Y \implies \map \rho X \le \map \rho Y \)      
\((\text R 6)\)   $:$     \(\ds \forall X, Y \in \powerset S:\) \(\ds \map \rho {X \cup Y} + \map \rho {X \cap Y} \le \map \rho X + \map \rho Y \)      


Condition 3

$\rho$ is the rank function of a matroid $M = \struct{S, \mathscr I}$.


Proof

Condition 1 implies Condition 3

Let $\rho$ satisfy formulation 1 of the rank axioms:

\((\text R 1)\)   $:$   \(\ds \map \rho \O = 0 \)      
\((\text R 2)\)   $:$     \(\ds \forall X \in \powerset S \land y \in S:\) \(\ds \map \rho X \le \map \rho {X \cup \set y} \le \map \rho X + 1 \)      
\((\text R 3)\)   $:$     \(\ds \forall X \in \powerset S \land y, z \in S:\) \(\ds \map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X \implies \map \rho {X \cup \set y \cup \set z} = \map \rho X \)      



Lemma 1
$\forall A, B \subseteq S: A \subseteq B \implies \map \rho A \le \map \rho B$

$\Box$


Lemma 2
$\forall A \subseteq S: \map \rho A \le \card A$

$\Box$


Lemma 3

Let:

$A \subseteq S : \map \rho A = \card A$

Let:

$B \subseteq S : \forall b \in B \setminus A : \map \rho {A \cup \set b} \ne \card{A \cup \set b}$


Then:

$\map \rho {A \cup B} = \map \rho A$

$\Box$


Let:

$\mathscr I = \set{X \subseteq S : \map \rho X = \card X}$

It is to be shown that:

and


Matroid Axioms

Matroid Axiom $(\text I 1)$

We have:

\(\ds \map \rho \O\) \(=\) \(\ds 0\) Rank axiom $(\text R 1)$
\(\ds \) \(=\) \(\ds \card \O\) Cardinality of Empty Set

So:

$\O \in \mathscr I$

Hence:

$M$ satisfies matroid axiom $(\text I 1)$.

$\Box$


Matroid Axiom $(\text I 2)$

Let

$X \in \mathscr I$


Aiming for a contradiction, suppose

$\exists Y \subseteq X : Y \notin \mathscr I$

Let:

$Y_0 \subseteq X : \card {Y_0} = \max \set{\card Z : Z \subseteq X \land Z \notin \mathscr I}$


By definition of $\mathscr I$:

$Y_0 \notin \mathscr I \leadsto \map \rho {Y_0} \ne \card {Y_0}$

From Lemma 2:

$\map \rho {Y_0} < \card {Y_0}$


As $X \in \mathscr I$ then:

$Y_0 \ne X$

From Set Difference with Proper Subset:

$X \setminus Y_0 \ne \O$


Let $y \in X \setminus Y_0$.


We have:

\(\ds \card {Y_0} + 1\) \(=\) \(\ds \card {Y_0 \cup \set y}\) Corollary of Cardinality of Set Union
\(\ds \) \(=\) \(\ds \map \rho {Y_0 \cup \set y}\) As $\card {Y_0} = \max \set{\card Z : Z \subseteq X \land Z \notin \mathscr I}$
\(\ds \) \(\le\) \(\ds \map \rho {Y_0} + 1\) Rank axiom $(\text R 2)$
\(\ds \) \(<\) \(\ds \card {Y_0} + 1\) As $\map \rho {Y_0} < \card {Y_0}$

This is a contradiction.


So:

$\forall Y \subseteq X : Y \in \mathscr I$

Hence:

$M$ satisfies matroid axiom $(\text I 2)$.

$\Box$


Matroid Axiom $(\text I 3)$

Let

$U \in \mathscr I$
$V \subseteq S$
$\card U < \card V$


We prove the contrapositive statement:

$\paren{\forall x \in V \setminus U : U \cup \set x \notin \mathscr I} \implies V \notin \mathscr I$


Let for all $x \in V \setminus U$: $U \cup \set x \notin \mathscr I$

That is:

$\forall x \in V \setminus U : \map \rho {U \cup \set x} \ne \card {U \cup \set x}$


We have:

\(\ds \card V\) \(>\) \(\ds \card U\)
\(\ds \) \(=\) \(\ds \map \rho U\) As $U \in \mathscr I$
\(\ds \) \(=\) \(\ds \map \rho {U \cup V}\) Lemma 3
\(\ds \) \(\ge\) \(\ds \map \rho V\) Lemma 1

Hence:

$V \notin \mathscr I$

$\Box$


$\rho$ is Rank Function

Let $\rho_M$ be the rank function of the matroid $M = \struct{S, \mathscr I}$.


Let $X \subseteq S$.


By definition of the rank function:

$\map {\rho_M} X = \max \set{\card Y : Y \subseteq X, Y \in \mathscr I}$

Let $Y_0 \subseteq X$:

$\card {Y_0} = \max \set{\card Y : Y \subseteq X, Y \in \mathscr I}$

We have:

\(\ds \map {\rho_M} X\) \(=\) \(\ds \card {Y_0}\) By choice of $Y_0$
\(\ds \) \(=\) \(\ds \map \rho {Y_0}\) As $Y_0 \in \mathscr I$

So it remains to show:

$\map \rho {Y_0} = \map \rho X$


Case 1 : $Y_0 = X$

Let $Y_0 = X$.

Then:

$\map \rho {Y_0} = \map \rho X$

$\Box$


Case 2 : $Y_0 \ne X$

Let $Y_0 \ne X$.

Then:

$Y_0 \subsetneq X$

From Set Difference with Proper Subset:

$X \setminus Y_0 \ne \O$

By choice of $Y_0$:

$\forall y \in X \setminus Y_0 : Y_0 \cup \set y \notin \mathscr I$

That is:

$\forall y \in X \setminus Y_0 : \map \rho {Y_0 \cup \set y} \ne \card {Y_0 \cup \set y}$

From Lemma 3:

$\map \rho {Y_0} = \map \rho {Y_0 \cup X} = \map \rho X$

$\Box$


In either case:

$\map \rho {Y_0} = \map \rho X$

It follows that:

$\forall X \subseteq S : \map {\rho_M} X = \map \rho X$

Hence $\rho$ is the rank function of the matroid $M = \struct{S, \mathscr I}$.


$\Box$


Condition 3 implies Condition 2

Let $\rho$ be the rank function of a matroid $M = \struct{S, \mathscr I}$.


$\rho$ satisfies $(\text R 4)$

This follows immediately from Bounds for Rank of Subset.

$\Box$


$\rho$ satisfies $(\text R 5)$

This follows immediately from Rank Function is Increasing.

$\Box$


$\rho$ satisfies $(\text R 6)$

Let $X, Y \subseteq S$.


Let $A$ be a maximal independent subset of $X \cap Y$.

From Cardinality of Maximal Independent Subset Equals Rank of Set:

$\card A = \map \rho {X \cap Y}$


From Independent Subset is Contained in Maximal Independent Subset:

$\exists B \subseteq X \setminus Y : A \cup B$ is a maximal independent subset of $X$

Simiarly from Independent Subset is Contained in Maximal Independent Subset:

$\exists C \subseteq Y \setminus X : \paren{A \cup B} \cup C$ is a maximal independent subset of $X \cup Y$

and:

$\card{A \cup B \cup C} = \map \rho {X \cup Y}$


By matroid axiom $(\text I 2)$:

$A \cup C$ is an independent subset of $Y$.


We have:

\(\ds \map \rho X + \map \rho Y\) \(\ge\) \(\ds \card{A \cup B} + \card{A \cup C}\) Definition of rank function $\rho$
\(\ds \) \(=\) \(\ds \card{A \cup B} + \paren{\card A + \card C }\) Cardinality of Set Union: Corollary
\(\ds \) \(=\) \(\ds \paren{\card{A \cup B} + \card A } + \card C\) Sum of Cardinals is Associative
\(\ds \) \(=\) \(\ds \card{A \cup B \cup C} + \card A\) Cardinality of Set Union: Corollary
\(\ds \) \(=\) \(\ds \map \rho {X \cup Y} + \map \rho {X \cap Y}\) Definition of rank function $\rho$

$\Box$


Condition 2 implies Condition 1

Let $\rho$ satisfy formulation 2 of the rank axioms:

\((\text R 4)\)   $:$     \(\ds \forall X \in \powerset S:\) \(\ds 0 \le \map \rho X \le \size X \)      
\((\text R 5)\)   $:$     \(\ds \forall X, Y \in \powerset S:\) \(\ds X \subseteq Y \implies \map \rho X \le \map \rho Y \)      
\((\text R 6)\)   $:$     \(\ds \forall X, Y \in \powerset S:\) \(\ds \map \rho {X \cup Y} + \map \rho {X \cap Y} \le \map \rho X + \map \rho Y \)      



$\rho$ satisfies $(\text R 1)$

We have:

\(\ds 0\) \(\le\) \(\ds \map \rho \O\) Rank axiom $(\text R 4)$
\(\ds \) \(\le\) \(\ds \card \O\) Rank axiom $(\text R 4)$
\(\ds \) \(=\) \(\ds 0\) Cardinality of Empty Set

Hence:

$\map \rho \O = 0$

$\Box$


$\rho$ satisfies $(\text R 2)$

Let $X \subseteq S$.

Let $y \in S$.


We have:

\(\ds \map \rho X\) \(\le\) \(\ds \map \rho {X \cup y}\) Rank axiom $(\text R 5)$
\(\ds \) \(\le\) \(\ds \map \rho X + \map \rho {\set y} - \map \rho {X \cup \set y}\) Rank axiom $(\text R 6)$
\(\ds \) \(\le\) \(\ds \map \rho X + \map \rho {\set y}\)
\(\ds \) \(\le\) \(\ds \map \rho X + \card {\set y}\) Rank axiom $(\text R 4)$
\(\ds \) \(\le\) \(\ds \map \rho X + 1\) Cardinality of Singleton

This proves rank axiom $(\text R 2)$

$\Box$


$\rho$ satisfies $(\text R 3)$

Let $X \subseteq S$.

Let $x, y \in S$.

Let $\map \rho {X \cup \set x} = \map \rho {X \cup \set y} = \map \rho X$.


We have:

\(\ds \map \rho X\) \(\le\) \(\ds \map \rho {X \cup \set x \cup \set y }\) Rank axiom $(\text R 5)$
\(\ds \) \(=\) \(\ds \map \rho {\paren{X \cup \set x} \cup \paren{X \cup \set y} }\)
\(\ds \) \(\le\) \(\ds \map \rho {X \cup \set x} + \map \rho {X \cup \set x} - \map \rho {\paren{X \cup \set x} \cap \paren{X \cup \set y} }\) Rank axiom $(\text R 6)$
\(\ds \) \(\le\) \(\ds \map \rho {X \cup \set x} + \map \rho {X \cup \set x} - \map \rho X\)
\(\ds \) \(=\) \(\ds \map \rho X + \map \rho X - \map \rho X\)
\(\ds \) \(=\) \(\ds \map \rho X\)

Hence:

$\map \rho {X \cup \set x \cup \set y} = \map \rho X$

This proves rank axiom $(\text R 3)$

$\blacksquare$


Condition 3 implies Condition 1

Let $\rho$ be the rank function of a matroid $M = \struct{S, \mathscr I}$ on $S$


$\rho$ satisfies $(\text R 1)$

$\rho$ satisfies $(\text R 1)$ follows immediately from Rank of Empty Set is Zero.

$\Box$


$\rho$ satisfies $(\text R 2)$

Let:

$X \subseteq S$
$y \in S$

From Rank Function is Increasing:

$\map \rho X \le \map \rho {X \cup \set y}$


Let $Y$ be a maximal independent subset of $X \cup \set y$.

From Cardinality of Maximal Independent Subset Equals Rank of Set

$\card Y = \map \rho {X \cup \set y}$

By matroid axiom $(\text I 2)$:

$Y \setminus \set y \in \mathscr I$

We now consider two cases.

Case 1: $y \in Y$

We have:

\(\ds \map \rho X\) \(\ge\) \(\ds \card{Y \setminus \set y}\) Definition of Rank Function
\(\ds \) \(=\) \(\ds \card Y - \card{Y \cap \set y}\) Cardinality of Set Difference
\(\ds \) \(=\) \(\ds \card Y - \card{\set y}\) Singleton of Element is Subset
\(\ds \) \(=\) \(\ds \card Y - 1\) Cardinality of Singleton
\(\ds \leadsto \ \ \) \(\ds \map \rho X + 1\) \(\ge\) \(\ds \card Y\) Add one to both sides

$\Box$


Case 2: $y \notin Y$

We have:

\(\ds \map \rho X + 1\) \(>\) \(\ds \map \rho X\)
\(\ds \) \(\ge\) \(\ds \card{Y \setminus \set y}\) Definition of Rank Function
\(\ds \) \(=\) \(\ds \card Y - \card{Y \cap \set y}\) Cardinality of Set Difference
\(\ds \) \(=\) \(\ds \card Y - \O\) Intersection With Singleton is Disjoint if Not Element
\(\ds \) \(=\) \(\ds \card Y - 0\) Cardinality of Empty Set
\(\ds \) \(=\) \(\ds \card Y\)

$\Box$


In either case:

$\map \rho X + 1 \ge \card Y = \map \rho {X \cup \set y}$

$\Box$


$\rho$ satisfies $(\text R 3)$

Let:

$X \subseteq S$
$y, z \in S$
Case 1: $y, z \notin X$

Let $A = X \cup \set y \cup \set z$.

From Rank Function is Increasing:

$\map \rho A \ge \map \rho X$

We now prove the contrapositive statement:

$\map \rho A > \map \rho X \implies$ either $\map \rho {X \cup \set y} > \map \rho X$ or $\map \rho {X \cup \set z} > \map \rho X$


Let $\map \rho A > \map \rho X$.

Let $Y$ be a maximal independent subset of $X$.

Let $Z$ be a maximal independent subset of $A$.

From Cardinality of Maximal Independent Subset Equals Rank of Set:

$\card Y = \map \rho X < \map \rho A = \card Z$

From Independent Set can be Augmented by Larger Independent Set there exists non-empty set $Z' \subseteq Z \setminus Y$:

$Y \cup Z' \in \mathscr I$
$\card{Y \cup Z'} = \card Z$


Aiming for a contradiction, suppose:

$y, z \notin Z'$

We have:

\(\ds Z'\) \(=\) \(\ds Z' \cap Z\)
\(\ds \) \(\subseteq\) \(\ds Z' \cap A\)
\(\ds \) \(=\) \(\ds Z' \cap \paren{X \cup \set y \cup \set z}\)
\(\ds \) \(=\) \(\ds \paren{Z' \cap X} \cup \paren{Z' \cap \paren{\set y \cup \set z} }\)
\(\ds \) \(=\) \(\ds \paren{Z' \cap X} \cup \O\)
\(\ds \) \(=\) \(\ds \paren{Z' \cap X}\)
\(\ds \) \(\subseteq\) \(\ds X\)
\(\ds \leadsto \ \ \) \(\ds Y \cup Z'\) \(\subseteq\) \(\ds X\)

Hence:

\(\ds \card{Y \cup Z'}\) \(=\) \(\ds \card Z\)
\(\ds \) \(=\) \(\ds \map \rho A\)
\(\ds \) \(>\) \(\ds \map \rho X\)
\(\ds \) \(\ge\) \(\ds \card{Y \cup Z'}\)

This is a contradiction.

Hence:

either $y \in Z'$ or $z \in Z'$


Without loss of generality, assume $y \in Z'$.

From matroid axiom $(\text I 2)$:

$Y \cup \set y \in \mathscr I$

We have:

\(\ds \map \rho {X \cup \set y}\) \(\ge\) \(\ds \card{Y \cup \set y}\) Definition of Rank Function (Matroid)
\(\ds \) \(=\) \(\ds \card Y + \card{\set y}\) Corollary of Cardinality of Set Union
\(\ds \) \(=\) \(\ds \card Y + 1\) Cardinality of Singleton
\(\ds \) \(>\) \(\ds \card Y\)
\(\ds \) \(=\) \(\ds \map \rho X\) Definition of Rank Function (Matroid)

This proves the contrapositive statement.

$\Box$


Case 2: Either $y \in X$ or $z \in X$

Without loss of generality, assume $y \in X$.


Let:

$\map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X$.

We have:

$X \cup \set y \cup \set z = X \cup \set z$

Hence:

$\map \rho {X \cup \set y \cup \set z} = \map \rho {X \cup \set z} = \map \rho X$

$\Box$


In either case:

$\map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X \implies \map \rho {X \cup \set y \cup \set z} = \map \rho X$

$\blacksquare$


Sources