Equivalence of Formulations of Axiom of Replacement
Jump to navigation
Jump to search
Theorem
In the context of class theory, the following formulations of the Axiom of Replacement are equivalent:
Formulation 1
For every mapping $f$ and set $x$ in the domain of $f$, the image $f \sqbrk x$ is a set.
Symbolically:
- $\forall Y: \map {\text{Fnc}} Y \implies \forall x: \exists y: \forall u: u \in y \iff \exists v: \tuple {v, u} \in Y \land v \in x$
where:
- $\map {\text{Fnc}} X := \forall x, y, z: \tuple {x, y} \in X \land \tuple {x, z} \in X \implies y = z$
and the notation $\tuple {\cdot, \cdot}$ is understood to represent Kuratowski's formalization of ordered pairs.
Formulation 2
For every mapping $f$ and set $x$, the restriction $f \restriction x$ is a set.
Formulation 3
Every mapping whose domain is a set is also a set.
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 2010: Raymond M. Smullyan and Melvin Fitting: Set Theory and the Continuum Problem (revised ed.) ... (previous) ... (next): Chapter $6$: Order Isomorphism and Transfinite Recursion: $\S 3$ The axiom of substitution: Exercise $3.1$