Euler's Sine Identity/Real Domain/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sin x = \dfrac {e^{i x} - e^{-i x} } {2 i}$


Proof

\(\text {(1)}: \quad\) \(\ds e^{i x}\) \(=\) \(\ds \cos x + i \sin x\) Euler's Formula
\(\text {(2)}: \quad\) \(\ds e^{-i x}\) \(=\) \(\ds \cos x - i \sin x\) Euler's Formula: Corollary
\(\ds \leadsto \ \ \) \(\ds e^{i x} - e^{-i x}\) \(=\) \(\ds \paren {\cos x + i \sin x} - \paren {\cos x - i \sin x}\) $(1) - (2)$
\(\ds \) \(=\) \(\ds 2 i \sin x\) simplifying
\(\ds \leadsto \ \ \) \(\ds \frac {e^{i x} - e^{-i x} } {2 i}\) \(=\) \(\ds \sin x\)

$\blacksquare$


Sources