Euler Formula for Sine Function
Jump to navigation
Jump to search
Theorem
Real Numbers
\(\ds \sin x\) | \(=\) | \(\ds x \prod_{n \mathop = 1}^\infty \paren {1 - \frac {x^2} {n^2 \pi^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x \paren {1 - \dfrac {x^2} {\pi^2} } \paren {1 - \dfrac {x^2} {4 \pi^2} } \paren {1 - \dfrac {x^2} {9 \pi^2} } \dotsm\) |
for all $x \in \R$.
Complex Numbers
\(\ds \sin z\) | \(=\) | \(\ds z \prod_{n \mathop = 1}^\infty \paren {1 - \frac {z^2} {n^2 \pi^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds z \paren {1 - \dfrac {z^2} {\pi^2} } \paren {1 - \dfrac {z^2} {4 \pi^2} } \paren {1 - \dfrac {z^2} {9 \pi^2} } \dotsm\) |
for all $z \in \C$.
Also see
- Euler Formula for Cosine Function
- Euler Formula for Hyperbolic Sine Function
- Euler Formula for Hyperbolic Cosine Function
Source of Name
This entry was named for Leonhard Paul Euler.
Historical Note
The Euler Formula for Sine Function was not put on an adequately rigorous footing until Karl Weierstrass provided a satisfactory proof for Weierstrass Factor Theorem.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 38$: Infinite Products: $38.1$