Euler Formula for Sine Function/Real Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

$\displaystyle \sin x = x \prod_{n \mathop = 1}^\infty \left({1 - \frac {x^2} {n^2 \pi^2}}\right)$

for all $x \in \R$.


Proof 1

For $x \in \R$ and $n \in \N$, let:

$\displaystyle I_n \left({x}\right) = \int_0^{\pi / 2} \cos {x t} \cos^n t \rd t $

Observe that:

$I_0 \left({0}\right) = \dfrac {\pi} 2$

and:

\(\displaystyle I_0 \left({x}\right)\) \(=\) \(\displaystyle \int_0^{\pi / 2} \cos {x t} \rd t\)
\(\displaystyle \) \(=\) \(\displaystyle \frac 1 x \sin \left({\frac {\pi x} 2 }\right)\)

which yields:

$(1): \quad \sin \left({\dfrac {\pi x} 2}\right) = \dfrac {\pi x} 2 \dfrac {I_0 \left({x}\right)} {I_0 \left({0}\right)}$


Integrating by parts twice with $n \ge 2$, we have:

\(\displaystyle x I_n \left({x}\right)\) \(=\) \(\displaystyle n \int_0^{\pi / 2} \sin {x t} \cos^{n - 1} t \sin t \rd t\)
\(\displaystyle x^2 I_n \left({x}\right)\) \(=\) \(\displaystyle n \int_0^{\pi / 2} \cos{x t} \left({\cos^n t - \left({n - 1}\right) \cos^{n - 2} t \sin^2 t }\right) \rd t\)
\(\displaystyle \) \(=\) \(\displaystyle n \int_0^{\pi / 2} \cos{x t} \left({n \cos^n t - \left({n - 1}\right) \cos^{n - 2} t }\right) \rd t\) Sum of Squares of Sine and Cosine
\(\displaystyle \) \(=\) \(\displaystyle n^2 I_n \left({x}\right) - n \left({n - 1}\right) I_{n - 2} \left({x}\right)\)

which yields the reduction formula:

$n \left({n - 1}\right) I_{n - 2} \left({x}\right) = \left({n^2 - x^2}\right) I_n \left({x}\right)$

Substituting $x = 0$ we obtain:

$n \left({n - 1}\right) I_{n - 2} \left({0}\right) = n^2 I_n \left({0}\right)$

From Shape of Cosine Function, it is clear that $I_n \left({0}\right) > 0$ for $n \ge 0 $.

Therefore we can divide the two equations to get:

$(2): \quad \dfrac {I_{n - 2} \left({x}\right)} {I_{n - 2} \left({0}\right)} = \left({1 - \dfrac {x^2} {n^2} }\right) \dfrac {I_n \left({x}\right)} {I_n \left({0}\right)}$


By Relative Sizes of Definite Integrals we have:

\(\displaystyle \left \vert{I_n \left({0}\right) - I_n \left({x}\right)}\right \vert\) \(=\) \(\displaystyle \int_0^{\pi / 2} \left({1 - \cos {x t} }\right) \cos^n t \rd t\) the integral is non-negative
\(\displaystyle \) \(\le\) \(\displaystyle \frac {x^2} 2 \int_0^{\pi / 2} t^2 \cos^n t \rd t\) Cosine Inequality
\(\displaystyle \) \(\le\) \(\displaystyle \frac {x^2} 2 \int_0^{\pi / 2} t \cos^{n - 1} t \sin t \rd t\) Tangent Inequality
\(\displaystyle \) \(=\) \(\displaystyle \frac {x^2} {2 n} \int_0^{\pi / 2} \cos^n t \r d t\) Integration by Parts
\(\displaystyle \) \(=\) \(\displaystyle \frac {x^2} {2 n} I_n \left({0}\right)\)

which yields the inequality:

$\left \vert{1 - \dfrac {I_n \left({x}\right)} {I_n \left({0}\right)} }\right \vert \le \dfrac {x^2} {2 n}$

It follows from Squeeze Theorem that:

$\displaystyle (3): \quad \lim_{n \to \infty} \frac {I_n \left({x}\right)} {I_n \left({0}\right)} = 1$


Consider the equation, for even $n$:

$\displaystyle \sin \left({\frac {\pi x} 2}\right) = \frac {\pi x} 2 \prod_{i \mathop = 1}^{n / 2} \left({1 - \frac {x^2} {\left({2 i}\right)^2} }\right) \frac {I_n \left({x}\right)} {I_n \left({0}\right)}$

This is true for $n = 0$ by $(1)$.

Suppose it is true for some $n = k$.

Then:

\(\displaystyle \sin \left({\frac {\pi x} 2}\right)\) \(=\) \(\displaystyle \frac {\pi x} 2 \prod_{i \mathop = 1}^{k / 2} \left({1 - \frac {x^2} {\left({2 i}\right)^2} }\right) \frac {I_k \left({x}\right)} {I_k \left({0}\right)}\)
\(\displaystyle \) \(=\) \(\displaystyle \frac {\pi x} 2 \prod_{i \mathop = 1}^{\left({k + 2}\right) / 2} \left({1 - \frac {x^2} {\left({2 i}\right)^2} }\right) \frac {I_{k + 2} \left({x}\right)} {I_{k + 2} \left({0}\right)}\) by $(2)$

So it is true for all even $n$ by induction.

Taking the limit as $n \to \infty$ we have:

\(\displaystyle \sin \left({\frac {\pi x} 2}\right)\) \(=\) \(\displaystyle \lim_{n \to \infty} \frac {\pi x} 2 \prod_{i \mathop = 1}^{n / 2} \left({1 - \frac {x^2} {\left({2 i}\right)^2} }\right) \frac {I_n \left({x}\right)} {I_n \left({0}\right)}\)
\(\displaystyle \) \(=\) \(\displaystyle \frac {\pi x} 2 \prod_{i \mathop = 1}^\infty \left({1 - \frac {x^2} {\left({2 i}\right)^2} }\right) \lim_{n \to \infty} \frac {I_n \left({x}\right)} {I_n \left({0}\right)}\) Product Rule for Limits of Functions
\(\displaystyle \) \(=\) \(\displaystyle \frac {\pi x} 2 \prod_{i \mathop = 1}^\infty \left({1 - \frac {x^2} {\left({2 i}\right)^2} }\right)\) by $(3)$

or equivalently, letting $\dfrac {\pi x} 2 \mapsto x$:

$\displaystyle \sin x = x \prod_{n \mathop = 1}^\infty \left({1 - \frac {x^2} {n^2 \pi^2} }\right)$

$\blacksquare$


Proof 2

Using De Moivre's Formula:

$\sin x = \dfrac {\left({\cos \dfrac x n + i \sin \dfrac x n}\right)^n - \left({\cos \dfrac x n - i \sin \dfrac x n}\right)^n} {2i}$

The difference between two $n$th powers can be extracted into linear factors using $n$th roots of unity.


For large $n$, we can replace:

$\cos \dfrac x n$ by $1$
$\sin \dfrac x n$ by $\dfrac x n$


Proof 3

We have that $\sin x$ has a power series representation:

$\sin x = x - \dfrac {x^3} {3!} + \dfrac {x^5} {5!} - \dfrac {x^7} {7!} + \cdots$

The roots of sine are the numbers $k \pi$, where $k$ is any integer.

From the Polynomial Factor Theorem, the following might be true:

$\displaystyle \sin x = A x \prod \left({1 - \frac x {k \pi} }\right)$

where the product is taken over all $n \in \Z \setminus \left\{{0}\right\}$, and $A$ is some constant.

The intuition is as follows.

\(\displaystyle \sin x\) \(=\) \(\displaystyle \ldots \left({1 - \frac x {2 \pi} }\right) \left({1 - \frac x \pi}\right) A x \left({1 + \frac x \pi}\right) \left({1 + \frac x {2 \pi} }\right)\cdots\)
\(\displaystyle \) \(=\) \(\displaystyle A x \left({1 - \frac {x^2} {\pi^2} }\right) \left({1 - \frac {x^2} {2^2 \pi^2} }\right) \left({1 - \frac {x^2} {3^2 \pi^2} }\right) \cdots\)
\(\displaystyle \implies \ \ \) \(\displaystyle \frac {\sin x} x\) \(=\) \(\displaystyle A \left({1 - \frac {x^2} {\pi^2} }\right) \left({1 - \frac {x^2} {2^2 \pi^2} }\right) \left({1 - \frac {x^2} {3^2 \pi^2} }\right) \cdots\) for $x \ne 0$.

That $\dfrac {\sin x} x \to 1$ as $x \to 0$ is a well known limit.

Letting $x$ tend to $0$ in the above equation implies that $A = 1$.

We now formalize the above claims.


Proof 4

For $x \in \R$ and $n \in \N_{> 0}$, let:

$\map {f_n} x = \dfrac 1 2 \paren {\paren {1 + \dfrac x n}^n - \paren {1 - \dfrac x n}^n }$

Then $\map {f_n} x = 0$ if and only if:

\(\displaystyle \paren {1 + \frac x n}^n\) \(=\) \(\displaystyle \paren {1 - \frac x n}^n\)
\(\displaystyle \leadstoandfrom \ \ \) \(\displaystyle 1 + \frac x n\) \(=\) \(\displaystyle \paren {1 - \frac x n} e^{2 \pi i \frac k n}\) for $k \in \Z$
\(\displaystyle \leadstoandfrom \ \ \) \(\displaystyle x\) \(=\) \(\displaystyle n \frac {e^{2 \pi i \frac k n} - 1} {e^{2 \pi i \frac k n} + 1}\)
\(\displaystyle \) \(=\) \(\displaystyle n i \, \map \tan {\frac {k \pi} n }\) Tangent Exponential Formulation


Hence the roots of $\map {f_{2 m + 1} } x$ are:

$\paren {2 m + 1} i \, \map \tan {\dfrac {k \pi} {2 m + 1} }$

for $-m \le k \le m$.


Observe that $\map {f_{2 m + 1} } x$ is a polynomial of degree $2 m + 1$.

Then for some constant $C$, we have:

\(\displaystyle \map {f_{2 m + 1} } x\) \(=\) \(\displaystyle C x \prod_{\substack {k \mathop = - m \\ k \mathop \ne 0} }^m \paren {1 - \frac x {\paren {2 m + 1} i \, \map \tan {k \pi / \paren {2 m + 1} } } }\) Polynomial Factor Theorem
\(\displaystyle \) \(=\) \(\displaystyle C x \prod_{k \mathop = 1}^m \paren {1 + \frac {x^2} {\paren {2 m + 1}^2 \map {\tan^2} {k \pi / \paren {2 m + 1} } } }\) Tangent Function is Odd


It can be seen from the Binomial Theorem that the coefficient of $x$ in $\map {f_{2 m + 1} } x$ is $1$.

Hence $C = 1$, and we obtain:

$\displaystyle \map {f_{2 m + 1} } x = x \prod_{k \mathop = 1}^m \paren {1 + \frac {x^2} {\paren {2 m + 1}^2 \map {\tan^2} {k \pi / \paren {2 m + 1} } } }$


Let $l < m$.

Then:

$\displaystyle x \prod_{k \mathop = 1}^l \paren {1 + \frac {x^2} {\paren {2 m + 1}^2 \map {\tan^2} {k \pi / \paren {2 m + 1} } } } \le \map {f_{2 m + 1} } x$

Taking the limit as $m \to \infty$ we have:

\(\displaystyle \lim_{m \mathop \to \infty} x \prod_{k \mathop = 1}^l \paren {1 + \frac {x^2} {k^2 \pi^2} \paren {\frac {k \pi / \paren {2 m + 1} } {\map \tan {k \pi / \paren {2 m + 1} } } }^2 }\) \(\le\) \(\displaystyle \frac 1 2 \paren {e^x - e^{-x} }\) Definition of Exponential Function
\(\displaystyle \leadsto \ \ \) \(\displaystyle x \prod_{k \mathop = 1}^l \paren {1 + \frac {x^2} {k^2 \pi^2} }\) \(\le\) \(\displaystyle \sinh x\) Limit of Tan X over X and Definition of Hyperbolic Sine


By Tangent Inequality, we have:

$\map \tan {\dfrac {k \pi} {2 m + 1} } \le \dfrac {k \pi} {2 m + 1}$

and hence:

$\displaystyle \map {f_{2 l + 1} } x \le x \prod_{k \mathop = 1}^l \paren {1 + \frac {x^2} {k^2 \pi^2} } \le \sinh x$


Taking the limit as $l \to \infty$, we have by the Squeeze Theorem:

$\displaystyle x \prod_{k \mathop = 1}^\infty \paren {1 + \frac {x^2} {k^2 \pi^2} } = \sinh x$

Substituting $x \mapsto i x$, we obtain:

$\displaystyle \sin x = x \prod_{k \mathop = 1}^\infty \paren {1 - \frac {x^2} {k^2 \pi^2} }$

$\blacksquare$