Evolute of Ellipse/Cartesian Form
Jump to navigation
Jump to search
Theorem
Let $E$ be an ellipse embedded in a Cartesian plane with the equation:
- $\dfrac {x^2} {a^2} + \dfrac {y^2} {b^2} = 1$
The evolute of $E$ is given by the Cartesian equation:
- $\paren {a x}^{2 / 3} + \paren {b y}^{2 / 3} = \paren {a^2 - b^2}^{2 / 3}$
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 11$: Special Plane Curves: Evolute of an Ellipse: $11.29$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 9$: Special Plane Curves: Evolute of an Ellipse: $9.29.$
- Weisstein, Eric W. "Ellipse Evolute." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EllipseEvolute.html