Existence of Banach Limits

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\map {\ell^\infty} \R, \norm \cdot_\infty}$ be the normed vector space of bounded sequences on $\R$.

Let $\struct {\paren {\map {\ell^\infty} \R}^\ast, \norm \cdot_{\paren {\ell^\infty}^\ast} }$ be the normed dual space of $\struct {\map {\ell^\infty} \R, \norm \cdot_\infty}$.


Then there exists a Banach limit $L \in \paren {\map {\ell^\infty} \R}^\ast$.


Proof

Let $\map c \R$ be the set of the convergent real sequences.

Then:

$\map c \R \subseteq \map {\ell^\infty} \R$

is a linear subspace in view of:

Convergent Real Sequence is Bounded
Linear Combination of Convergent Sequences in Topological Vector Space is Convergent


Define a mapping $f_0 : \map c \R \to \R$ by:

$\ds \map {f_0} {\sequence {x_n} } := \lim _{n \mathop \to \infty} x_n$



Lemma 1

$f_0 \in {\map c \R}^\ast$ such that:

$\norm {f_0}_{ {\map c \R}^\ast} = 1$

and:

$\map {f_0} {\mathbf 1} = 1$

Proof of Lemma 1

First, $f_0$ is linear, since Infinite Limit Operator is Linear Mapping.

Furthermore, $f_0$ is bounded with:

$\norm {f_0}_{ {\map c \R}^\ast} = 1$

since:

$\ds \size {\map {f_0} {\sequence {x_n} } } = \size { \lim _{n \mathop \to \infty} x_n } \le \sup_n \size {x_n} = \norm {\sequence {x_n} }_\infty$

and:

$\map {f_0} {\mathbf 1} = 1 = \norm {\mathbf 1}_\infty$

$\Box$


By Hahn-Banach Theorem there is an extension $f \in \paren {\ell^\infty}^\ast$ of $f_0$ such that:

$(a):\quad \norm f_{\paren {\ell^\infty}^\ast} = \norm {f_0}_{ {\map c \R}^\ast} = 1$

Observe that by Lemma 1:

$(b):\quad \map f {\mathbf 1} = \map {f_0} {\mathbf 1} = 1$


Define a mapping $L : \map {\ell^\infty} \R \to \R$ by:

$\ds \map L {\sequence {x_n} } := \map f {\sequence {x_0, \frac {x_0 + x_1} 2, \frac {x_0 + x_1 + x_2} 3, \ldots } }$

Lemma 2

$L \in \paren {\map {\ell^\infty} \R}^\ast$ such that:

$\norm L_{\paren {\ell^\infty}^\ast} = 1$

and:

$\map L {\mathbf 1} = 1$

Proof of Lemma 2

$L$ is linear, since the mapping:

$\ds \sequence {x_n} \mapsto \frac { x_0 + \cdots + x_k } {k+1}$

is linear for each $k \in \N$.

Moreover, observe:

\(\ds \size {\map L {\sequence {x_n} } }\) \(=\) \(\ds \size { \map f {\sequence {x_0, \frac {x_0 + x_1} 2, \frac {x_0 + x_1 + x_2} 3, \ldots } } }\)
\(\ds \) \(\le\) \(\ds \norm f_{\paren {\map {\ell^\infty} \R}^\ast} \norm {\sequence {x_0, \frac {x_0 + x_1} 2, \frac {x_0 + x_1 + x_2} 3, \ldots } }_{\map {\ell^\infty} \R }\) Definition of $\norm f_{\paren {\map {\ell^\infty} \R}^\ast}$
\(\ds \) \(=\) \(\ds \norm {\sequence {x_0, \frac {x_0 + x_1} 2, \frac {x_0 + x_1 + x_2} 3, \ldots } }_{\map {\ell^\infty} \R }\) by $(a)$
\(\ds \) \(\le\) \(\ds \norm {\sequence {x_n} }_{\map {\ell^\infty} \R}\)

and:

$\map L {\mathbf 1} = \map f {\mathbf 1} = 1 = \norm {\mathbf 1}_\infty$

by $(b)$.

$\Box$


We check that $L$ is a Banach limit.

First, we check that for all $x = \sequence {x_n} \in \map {\ell^\infty} \R$:

$\map L x \ge 0$

if $x_n \ge 0$ for all $n \in \N$.

Observe that:

$(c):\quad \ds \forall n \in \N : \size {x_n - \frac {\norm x_{\map {\ell^\infty} \R} } 2} \le \frac {\norm x_{\map {\ell^\infty} \R} } 2$

since:

$x_n \in \closedint 0 {\norm x_{\map {\ell^\infty} \R} }$

Thus, by Lemma 2:

\(\ds \frac {\norm x_{\map {\ell^\infty} \R} } 2 - \map L {\sequence {x_n} }\) \(=\) \(\ds \frac {\norm x_{\map {\ell^\infty} \R} } 2 \map L {\mathbf 1} - \map L {\sequence {x_n} }\) as $\map L {\mathbf 1} = 1$
\(\ds \) \(=\) \(\ds \map L { \sequence { \frac {\norm x_{\map {\ell^\infty} \R} } 2 - x_n} }\) Linearity of $L$
\(\ds \) \(\le\) \(\ds \norm L_{\paren {\ell^\infty}^\ast} \norm { \sequence { \frac {\norm x_{\map {\ell^\infty} \R} } 2 - x_n} }_{\map {\ell^\infty} \R}\) Definition of $\norm L_{\paren {\ell^\infty}^\ast}$
\(\ds \) \(=\) \(\ds \norm { \sequence { \frac {\norm x_{\map {\ell^\infty} \R} } 2 - x_n} }_{\map {\ell^\infty} \R}\) as $\norm L_{\paren {\ell^\infty}^\ast} = 1$
\(\ds \) \(\le\) \(\ds \frac {\norm x_{\map {\ell^\infty} \R} } 2\) by $(c)$

That is:

$0 \le \map L {\sequence {x_n} }$


Secondly:

\(\ds \map L {\sequence {x_n} } - \map L {S \sequence {x_n} }\) \(=\) \(\ds \map f {\sequence {x_0 - x_1, \frac {x_0 - x_2} 2, \frac {x_0 - x_3} 3, \ldots } }\)
\(\ds \) \(=\) \(\ds \map {f_0} {\sequence {x_0 - x_1, \frac {x_0 - x_2} 2, \frac {x_0 - x_3} 3, \ldots } }\)
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \frac {x_0 - x_n} n\)
\(\ds \) \(=\) \(\ds 0\)


Finally, by Lemma 2:

$\map L {\mathbf 1} = 1$

$\blacksquare$