Infinite Limit Operator is Linear Mapping
Jump to navigation
Jump to search
Theorem
Let $c$ be the space of convergent sequences.
Let $\R$ be the set of real numbers.
Let $L : c \to \R$ be the infinite limit operator.
Then $L$ is a linear mapping.
Proof
Let $\mathbf x = \sequence {x_n}_{n \mathop \in \N}, \mathbf y = \sequence {y_n}_{n \mathop \in \N} \in c$.
Suppose $\mathbf x$ and $\mathbf y$ converge to $x$ and $y$ respectively.
Let $\alpha \in \R$.
Distributivity
\(\ds \map L {\mathbf x + \mathbf y}\) | \(=\) | \(\ds \map {\lim_{n \mathop \to \infty} } {x_n + y_n}\) | Definition of Infinite Limit Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds x + y\) | Sum Rule for Real Sequences | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} x_n + \lim_{n \mathop \to \infty} y_n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map L {\mathbf x} + \map L {\mathbf y}\) | Definition of Infinite Limit Operator |
$\Box$
Positive homogenity
\(\ds \map L {\alpha \mathbf x}\) | \(=\) | \(\ds \map {\lim_{n \mathop \to \infty} } {\alpha x_n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \alpha x\) | Multiple Rule for Real Sequences | |||||||||||
\(\ds \) | \(=\) | \(\ds \alpha \lim_{n \mathop \to \infty} {x_n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \alpha \map L {\mathbf x}\) | Definition of Infinite Limit Operator |
$\blacksquare$
Sources
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (previous) ... (next): Chapter $\S 2.1$: Continuous and linear maps. Linear transformations