Existence of Euler-Mascheroni Constant
Jump to navigation
Jump to search
Theorem
The real sequence:
- $\ds \sequence {\sum_{k \mathop = 1}^n \frac 1 k - \ln n}$
This limit is known as the Euler-Mascheroni constant.
Proof 1
Let $f: \R \setminus \set 0 \to \R: \map f x = \dfrac 1 x$.
Clearly $f$ is continuous and positive on $\hointr 1 {+\infty}$.
From Reciprocal Sequence is Strictly Decreasing, $f$ is decreasing on $\hointr 1 {+\infty}$.
Therefore the conditions of the Integral Test hold.
Thus the sequence $\sequence {\Delta_n}$ defined as:
- $\ds \Delta_n = \sum_{k \mathop = 1}^n \map f k - \int_1^n \map f x \rd x$
is decreasing and bounded below by zero.
But from the definition of the natural logarithm:
- $\ds \int_1^n \frac {\d x} x = \ln n$
Hence the result.
$\blacksquare$
Proof 2
For $n \in \N_{>0}$ let:
- $\ds \gamma_n := \sum_{k \mathop = 1}^n \frac 1 k - \ln n$
Then:
\(\ds \gamma_n\) | \(=\) | \(\ds 1 + \int_1^n \dfrac {\floor u} {u^2} \rd u - \ln n\) | Integral Expression of Harmonic Number | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \int_1^n \dfrac {\floor u} {u^2} \rd u - \int _1 ^n \dfrac 1 u \rd u\) | Definition of Real Natural Logarithm | |||||||||||
\(\text {(1)}: \quad\) | \(\ds \) | \(=\) | \(\ds 1 - \int_1^n \dfrac {u - \floor u} {u^2} \rd u\) | Linear Combination of Definite Integrals | ||||||||||
\(\ds \) | \(\ge\) | \(\ds 1 - \int_1^n \dfrac 1 {u^2} \rd u\) | Relative Sizes of Definite Integrals as $0 \le u - \floor u < 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 n\) | ||||||||||||
\(\ds \) | \(\ge\) | \(\ds 0\) |
On the other hand:
\(\ds \gamma_n - \gamma_{n + 1}\) | \(=\) | \(\ds \paren {1 - \int_1^n \dfrac {u - \floor u} {u^2} \rd u} - \paren {1 - \int_1^{n + 1} \dfrac {u - \floor u} {u^2} \rd u}\) | by $\paren 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_n^{n + 1} \dfrac {u - \floor u} {u^2} \rd u\) | Sum of Integrals on Adjacent Intervals for Integrable Functions | |||||||||||
\(\ds \) | \(\ge\) | \(\ds 0\) | as $u - \floor u \ge 0$ |
Thus by monotone convergence theorem, the sequence $\sequence {\gamma_n}$ converges to a limit in $\R_{\ge 0}$.
$\blacksquare$
Sources
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): harmonic series
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): harmonic number
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): harmonic series