# Existence of Euler-Mascheroni Constant

Jump to navigation
Jump to search

## Theorem

The real sequence:

- $\displaystyle \sequence {\sum_{k \mathop = 1}^n \frac 1 k - \ln n}$

This limit is known as the Euler-Mascheroni constant.

## Proof

Let $f: \R \setminus \set 0 \to \R: \map f x = \dfrac 1 x$.

Clearly $f$ is continuous and positive on $\hointr 1 {+\infty}$.

From Reciprocal Sequence is Strictly Decreasing, $f$ is decreasing on $\hointr 1 {+\infty}$.

Therefore the conditions of the Integral Test hold.

Thus the sequence $\sequence {\Delta_n}$ defined as:

- $\displaystyle \Delta_n = \sum_{k \mathop = 1}^n \map f k - \int_1^n \map f x \rd x$

is decreasing and bounded below by zero.

But from the definition of the natural logarithm:

- $\displaystyle \int_1^n \frac {\d x} x = \ln n$

Hence the result.

$\blacksquare$

## Sources

- 1977: K.G. Binmore:
*Mathematical Analysis: A Straightforward Approach*... (previous) ... (next): $\S 14.3 \ (5)$