Existence of Transformations whose Commutator equals Identity
Jump to navigation
Jump to search
Theorem
Let $\map {C^\infty} \R$ be the space of smooth real functions.
Let $\circ$ denote the composition of mappings.
Let $A : \map {C^\infty} \R \to \map {C^\infty} \R$ be the mapping such that:
- $\forall \phi \in \map {C^\infty} \R : \forall x \in \R : \map {\paren {A \circ \phi} } x := \map {\dfrac {\d \phi} {\d x} } x$
Let $B : \map {C^\infty} \R \to \map {C^\infty} \R$ be the mapping such that
- $\forall \phi \in \map {C^\infty} \R : \forall x \in \R : \map {\paren {B \circ \phi} } x := x \map \phi x$
Let $I : \map {C^\infty} \R \to \map {C^\infty} \R$ be the identity such that:
- $\forall \phi \in \map {C^\infty} \R : I \circ \phi = \phi$
Then:
- $\forall \Psi \in \map {C^\infty} \R : \paren {A \circ B - B \circ A} \circ \Psi = I \circ \Psi$
or with slight abuse of notation:
- $A \circ B - B \circ A = I$
Proof
Let $\Psi \in \map {C^\infty} \R$.
Then:
\(\ds \paren {A \circ B - B \circ A} \circ \Psi\) | \(=\) | \(\ds \map {\paren {A \circ B} } \Psi - \map {\paren {B \circ A} } \Psi\) | Derivative Operator is Linear Mapping | |||||||||||
\(\ds \) | \(=\) | \(\ds \map A {\map B \Psi} - \map B {\map A \Psi}\) | Definition of Composition of Mappings | |||||||||||
\(\ds \) | \(=\) | \(\ds \map A {x \Psi} - \map B {\dfrac \d {\d x} \Psi}\) | by hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac \d {\d x} \paren {x \Psi} - x \dfrac \d {\d x} \Psi\) | by hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\Psi + x \dfrac \d {\d x} \Psi} - x \dfrac \d {\d x} \Psi\) | Product Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \Psi\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds I \circ \Psi\) | Definition of Identity Mapping |
$\blacksquare$
Sources
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (previous) ... (next): Chapter $\S 2.4$: Composition of continuous linear transformations