Expectation is Linear

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.

Let $X$ and $Y$ be integrable random variables on $\struct {\Omega, \Sigma, \Pr}$.

Let $\expect X$ denote the expectation of $X$.


Then:

$\forall \alpha, \beta \in \R: \expect {\alpha X + \beta Y} = \alpha \, \expect X + \beta \, \expect Y$


Proof

Discrete Random Variable

Follows directly from Expectation of Function of Joint Probability Mass Distribution, thus:


\(\ds \expect {\alpha X + \beta Y}\) \(=\) \(\ds \sum_x \sum_y \paren {\alpha x + \beta y} \, \map \Pr {X = x, Y = y}\) Expectation of Function of Joint Probability Mass Distribution
\(\ds \) \(=\) \(\ds \alpha \sum_x x \sum_y \map \Pr {X = x, Y = y}\)
\(\ds \) \(+\) \(\ds \beta \sum_y y \sum_x \map \Pr {X = x, Y = y}\)
\(\ds \) \(=\) \(\ds \alpha \sum_x x \, \map \Pr {X = x} + \beta \sum_y y \, \map \Pr {Y = y}\) Definition of Marginal Probability Mass Function
\(\ds \) \(=\) \(\ds \alpha \, \expect X + \beta \, \expect Y\) Definition of Expectation

$\blacksquare$


Continuous Random Variable

Let $\map \supp X$ and $\map \supp Y$ be the supports of $X$ and $Y$ respectively.

Let $f_{X, Y} : \map \supp X \times \map \supp Y \to \R$ be the joint probability density function of $X$ and $Y$.

Let $f_X$ and $f_Y$ be the marginal probability density functions of $X$ and $Y$.


Then:

\(\ds \expect {\alpha X + \beta Y}\) \(=\) \(\ds \int_{y \mathop \in \map \supp Y} \int_{x \mathop \in \map \supp X} \paren {\alpha x + \beta y} \map {f_{X, Y} } {x, y} \rd x \rd y\)
\(\ds \) \(=\) \(\ds \alpha \int_{y \mathop \in \map \supp Y} \int_{x \mathop \in \map \supp X} x \map {f_{X, Y} } {x, y} \rd x \rd y + \beta \int_{y \mathop \in \map \supp Y} \int_{x \mathop \in \map \supp X} y \map {f_{X, Y} } {x, y} \rd x \rd y\) Linear Combination of Definite Integrals
\(\ds \) \(=\) \(\ds \alpha \int_{x \mathop \in \map \supp X} x \paren {\int_{y \mathop \in \map \supp Y} \map {f_{X , Y} } {x, y} \rd y} \rd x + \beta \int_{y \mathop \in \map \supp Y} y \paren {\int_{x \mathop \in \map \supp X} \map {f_{X, Y} } {x, y} \rd x} \rd y\) rewriting
\(\ds \) \(=\) \(\ds \alpha \int_{x \mathop \in \map \supp X} x \map {f_X} x \rd x + \beta \int_{y \mathop \in \map \supp Y} y \map {f_Y} y \rd y\) Definition of Marginal Probability Density Function
\(\ds \) \(=\) \(\ds \alpha \expect X + \beta \expect Y\) Definition of Expectation of Continuous Random Variable

$\blacksquare$


General Case

From Integral of Integrable Function is Homogeneous, we have:

$\alpha X$ and $\beta Y$ are $\Pr$-integrable.

From Integral of Integrable Function is Additive, we have:

$\alpha X + \beta Y$ is $\Pr$-integrable.

From Linear Combination of Real-Valued Random Variables is Real-Valued Random Variable, we have:

$\alpha X + \beta Y$ is a real-valued random variable.

Then:

\(\ds \expect {\alpha X + \beta Y}\) \(=\) \(\ds \int \paren {\alpha X + \beta Y} \rd \Pr\) Definition of Expectation
\(\ds \) \(=\) \(\ds \int \paren {\alpha X} \rd \Pr + \int \paren {\beta Y} \rd \Pr\) Integral of Integrable Function is Additive
\(\ds \) \(=\) \(\ds \alpha \int X \rd \Pr + \beta \int Y \rd \Pr\) Integral of Integrable Function is Homogeneous
\(\ds \) \(=\) \(\ds \alpha \expect X + \beta \expect Y\) Definition of Expectation

$\blacksquare$


Sources