Exponent Combination Laws/Product of Powers/Proof 1
Jump to navigation
Jump to search
Theorem
Let $a \in \R_{> 0}$ be a positive real number.
Let $x, y \in \R$ be real numbers.
Let $a^x$ be defined as $a$ to the power of $x$.
Then:
- $a^x a^y = a^{x + y}$
Proof
\(\ds a^{x + y}\) | \(=\) | \(\ds \map \exp {\paren {x + y} \ln a}\) | Definition of Power to Real Number | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \exp {x \ln a + y \ln a}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \exp {x \ln a} \, \map \exp {y \ln a}\) | Exponential of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds a^x a^y\) | Definition of Power to Real Number |
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 14.7 \ (1) \ \text{(i)}$