Faà di Bruno's Formula/Proof 4
Jump to navigation
Jump to search
Theorem
Let $D_x^k u$ denote the $k$th derivative of a function $u$ with respect to $x$.
Then:
- $\ds D_x^n w = \sum_{j \mathop = 0}^n D_u^j w \sum_{\substack {\sum_{p \mathop \ge 1} k_p \mathop = j \\ \sum_{p \mathop \ge 1} p k_p \mathop = n \\ \forall p \mathop \ge 1: k_p \mathop \ge 0} } n! \prod_{m \mathop = 1}^n \dfrac {\paren {D_x^m u}^{k_m} } {k_m! \paren {m!}^{k_m} }$
Proof
$D_x^n$ can be expressed as a determinant:
- $D_x^n = \begin{vmatrix}
\dbinom {n - 1} 0 u_1 & \dbinom {n - 1} 1 u_2 & \dbinom {n - 1} 2 u_3 & \cdots & \dbinom {n - 1} {n - 2} u_{n - 1} & \dbinom {n - 1} {n - 1} u_n \\
-1 & \dbinom {n - 2} 0 u_1 & \dbinom {n - 2} 1 u_2 & \cdots & \dbinom {n - 2} {n - 3} u_{n - 2} & \dbinom {n - 2} {n - 2} u_{n - 1} \\ 0 & -1 & \dbinom {n - 3} 0 u_1 & \cdots & \dbinom {n - 3} {n - 4} u_{n - 3} & \dbinom {n - 3} {n - 3} u_{n - 2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & \dbinom 0 0 u_1
\end{vmatrix}$
where $u_j := \paren {D_x^j u} D_u$.
Both sides of this equation are differential operators which are to be applied to $w$.
![]() | This needs considerable tedious hard slog to complete it. In particular: Fill in the details To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Source of Name
This entry was named for Francesco Faà di Bruno.
Sources
- 1855: Francesco Faà di Bruno: Sullo sviluppo delle funzioni ("On the development of the functions") (Annali di Scienze Matematiche e Fisiche Vol. 6: pp. 479 – 480) (in which Faà di Bruno's Formula is presented)
- 1857: Francesco Faà di Bruno: Note sur une nouvelle formule de calcul differentiel (The Quarterly Journal of Pure and Applied Mathematics Vol. 1: pp. 359 – 360)
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.5$: Permutations and Factorials: Exercise $21$