Fermat Pseudoprime/Base 3/Examples/91

From ProofWiki
Jump to navigation Jump to search

Theorem

The smallest Fermat pseudoprime to base $3$ is $91$:

$3^{91} \equiv 3 \pmod {91}$

despite the fact that $91$ is not prime:

$91 = 7 \times 13$


Proof

We have that:

\(\ds 3^{91}\) \(=\) \(\ds 26 \, 183 \, 890 \, 704 \, 263 \, 137 \, 277 \, 674 \, 192 \, 438 \, 430 \, 182 \, 020 \, 124 \, 347\)
\(\ds \) \(=\) \(\ds 26 \, 183 \, 890 \, 704 \, 263 \, 137 \, 277 \, 674 \, 192 \, 438 \, 430 \, 182 \, 020 \, 124 \, 344 + 3\)
\(\ds \) \(=\) \(\ds 91 \times 287 \, 735 \, 062 \, 684 \, 210 \, 299 \, 754 \, 661 \, 455 \, 367 \, 364 \, 637 \, 583 \, 784 + 3\)
\(\ds \leadsto \ \ \) \(\ds 3^{91}\) \(\equiv\) \(\ds 3 \pmod {91}\)

Here we define Fermat pseudoprime to base $3$ to be a composite number $n$ such that (a slightly stronger result):

$3^{n - 1} \equiv 1 \pmod n$

Otherwise we have:

$3^6 = 729 \equiv 3 \pmod 6$


Following our definition, we see that a Fermat pseudoprime to base $3$ cannot be divisible by $3$:

\(\ds 3^{3 k - 1}\) \(\equiv\) \(\ds 0\) \(\ds \pmod 3\)
\(\ds \) \(\not \equiv\) \(\ds 1\) \(\ds \pmod {3 k}\)

neither can it be divisible by $4$:

\(\ds 3^{4 k}\) \(=\) \(\ds \paren {3^{2 k} }^2\)
\(\ds \) \(\equiv\) \(\ds 1\) \(\ds \pmod 4\) Square Modulo 4
\(\ds \) \(\not \equiv\) \(\ds 3\) \(\ds \pmod {4 k}\)

nor $10$:

\(\ds 3^{10 k}\) \(=\) \(\ds \paren {3^{5 k} }^2\)
\(\ds \) \(\equiv\) \(\ds \pm 1\) \(\ds \pmod 5\) Square Modulo 5
\(\ds \) \(\not \equiv\) \(\ds 3\) \(\ds \pmod {10 k}\)


Also such a number cannot be equal to twice a prime greater than $3$:

\(\ds 3^{2 p}\) \(\equiv\) \(\ds 3^2\) \(\ds \pmod p\) Fermat's Little Theorem
\(\ds \) \(\not \equiv\) \(\ds 3\) \(\ds \pmod p\) Since $p \nmid 6 = 2 \times 3$
\(\ds \leadsto \ \ \) \(\ds 3^{2 p}\) \(\not \equiv\) \(\ds 3\) \(\ds \pmod {2 p}\)

nor five times a prime greater than $5$:

\(\ds 3^{5 p}\) \(\equiv\) \(\ds 3^5\) \(\ds \pmod p\) Fermat's Little Theorem
\(\ds \) \(\not \equiv\) \(\ds 3\) \(\ds \pmod p\) Since $p \nmid 240 = 2^4 \times 3 \times 5$
\(\ds \leadsto \ \ \) \(\ds 3^{5 p}\) \(\not \equiv\) \(\ds 3\) \(\ds \pmod {5 p}\)


Therefore only the following numbers less than $91$ remain:

$25, 49, 77$

and we check:

\(\ds 3^{25}\) \(=\) \(\ds 847 \, 288 \, 609 \, 443\)
\(\ds \) \(=\) \(\ds 33 \, 891 \, 544 \, 377 \times 25 + 18\)
\(\ds \leadsto \ \ \) \(\ds 3^{25}\) \(\equiv\) \(\ds 18 \pmod {25}\)
\(\ds 3^{49}\) \(=\) \(\ds 239 \, 299 \, 329 \, 230 \, 617 \, 529 \, 590 \, 083\)
\(\ds \) \(=\) \(\ds 4 \, 883 \, 659 \, 780 \, 216 \, 684 \, 277 \, 348 \times 49 + 31\)
\(\ds \leadsto \ \ \) \(\ds 3^{49}\) \(\equiv\) \(\ds 31 \pmod {49}\)
\(\ds 3^{77}\) \(=\) \(\ds 5 \, 474 \, 401 \, 089 \, 420 \, 219 \, 382 \, 077 \, 155 \, 933 \, 569 \, 751 \, 763\)
\(\ds \) \(=\) \(\ds 71 \, 096 \, 118 \, 044 \, 418 \, 433 \, 533 \, 469 \, 557 \, 578 \, 827 \, 944 \times 77 + 75\)
\(\ds \leadsto \ \ \) \(\ds 3^{77}\) \(\equiv\) \(\ds 75 \pmod {77}\)

hence the result.

$\blacksquare$


Sources