Formulation 1 Rank Axioms Implies Rank Function of Matroid/Lemma 4

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ be a finite set.

Let $\rho : \powerset S \to \Z$ be a mapping from the power set of $S$ to the integers.


Let $\rho$ satisfy formulation 1 of the rank axioms:

\((\text R 1)\)   $:$   \(\ds \map \rho \O = 0 \)      
\((\text R 2)\)   $:$     \(\ds \forall X \in \powerset S \land y \in S:\) \(\ds \map \rho X \le \map \rho {X \cup \set y} \le \map \rho X + 1 \)      
\((\text R 3)\)   $:$     \(\ds \forall X \in \powerset S \land y, z \in S:\) \(\ds \map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X \implies \map \rho {X \cup \set y \cup \set z} = \map \rho X \)      


Let $M = \struct{S, \mathscr I}$ where:

$\mathscr I = \set{X \subseteq S : \map \rho X = \card X}$


Then $M$ satisfies matroid axiom $(\text I 1)$.

Proof

We have:

\(\ds \map \rho \O\) \(=\) \(\ds 0\) Rank axiom $(\text R 1)$
\(\ds \) \(=\) \(\ds \card \O\) Cardinality of Empty Set

So:

$\O \in \mathscr I$

Hence:

$M$ satisfies matroid axiom $(\text I 1)$.

$\blacksquare$