Formulation 1 Rank Axioms Implies Rank Function of Matroid/Lemma 6

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ be a finite set.

Let $\rho : \powerset S \to \Z$ be a mapping from the power set of $S$ to the integers.


Let $\rho$ satisfy formulation 1 of the rank axioms:

\((\text R 1)\)   $:$   \(\ds \map \rho \O = 0 \)      
\((\text R 2)\)   $:$     \(\ds \forall X \in \powerset S \land y \in S:\) \(\ds \map \rho X \le \map \rho {X \cup \set y} \le \map \rho X + 1 \)      
\((\text R 3)\)   $:$     \(\ds \forall X \in \powerset S \land y, z \in S:\) \(\ds \map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X \implies \map \rho {X \cup \set y \cup \set z} = \map \rho X \)      


Let $M = \struct{S, \mathscr I}$ where:

$\mathscr I = \set{X \subseteq S : \map \rho X = \card X}$


Then $M$ satisfies matroid axiom $(\text I 3)$.


Lemma 1
$\forall A, B \subseteq S: A \subseteq B \implies \map \rho A \le \map \rho B$


Lemma 3

Let:

$A \subseteq S : \map \rho A = \card A$

Let:

$B \subseteq S : \forall b \in B \setminus A : \map \rho {A \cup \set b} \ne \card{A \cup \set b}$


Then:

$\map \rho {A \cup B} = \map \rho A$


Proof

Let

$U \in \mathscr I$
$V \subseteq S$
$\card U < \card V$


We prove the contrapositive statement:

$\paren{\forall x \in V \setminus U : U \cup \set x \notin \mathscr I} \implies V \notin \mathscr I$


Let:

$\forall x \in V \setminus U: U \cup \set x \notin \mathscr I$

That is, by definition of $\mathscr I$:

$\forall x \in V \setminus U : \map \rho {U \cup \set x} \ne \card {U \cup \set x}$


We have:

\(\ds \card V\) \(>\) \(\ds \card U\) by hypothesis
\(\ds \) \(=\) \(\ds \map \rho U\) As $U \in \mathscr I$
\(\ds \) \(=\) \(\ds \map \rho {U \cup V}\) Lemma 3
\(\ds \) \(\ge\) \(\ds \map \rho V\) Lemma 1

Hence:

$V \notin \mathscr I$


It follows:

$M$ satisfies matroid axiom $(\text I 3)$.

$\blacksquare$