Gradient of Dot Product
Jump to navigation
Jump to search
Definition
Let $\map {\R^3} {x, y, z}$ denote the real Cartesian space of $3$ dimensions..
Let $\tuple {\mathbf i, \mathbf j, \mathbf k}$ be the standard ordered basis on $\R^3$.
Let $\mathbf f$ and $\mathbf g: \R^3 \to \R^3$ be vector-valued functions on $\R^3$:
- $\mathbf f := \tuple {\map {f_x} {\mathbf x}, \map {f_y} {\mathbf x}, \map {f_z} {\mathbf x} }$
- $\mathbf g := \tuple {\map {g_x} {\mathbf x}, \map {g_y} {\mathbf x}, \map {g_z} {\mathbf x} }$
Let $\nabla \mathbf f$ denote the gradient of $f$.
Then:
- $\map \nabla {\mathbf f \cdot \mathbf g} = \paren {\mathbf g \cdot \nabla} \mathbf f + \paren {\mathbf f \cdot \nabla} \mathbf g + \mathbf g \times \paren {\nabla \times \mathbf f} + \mathbf f \times \paren {\nabla \times \mathbf g}$
where:
- $\mathbf f \times \mathbf g$ denotes vector cross product
- $\mathbf f \cdot \mathbf g$ denotes dot product
Proof
\(\ds \map \nabla {\mathbf f \cdot \mathbf g}\) | \(=\) | \(\ds \map \nabla {f_x g_x + f_y g_y + f_z g_z}\) | Definition of Dot Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \partial {f_x g_x + f_y g_y + f_z g_z} } {\partial x} \mathbf i + \dfrac {\map \partial {f_x g_x + f_y g_y + f_z g_z} } {\partial y} \mathbf j + \dfrac {\map \partial {f_x g_x + f_y g_y + f_z g_z} } {\partial z} \mathbf k\) | Definition of Gradient Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial x} + \dfrac {\partial f_x} {\partial x} g_x + f_y \dfrac {\partial g_y} {\partial x} + \dfrac {\partial f_y} {\partial x} g_y + f_z \dfrac {\partial g_z} {\partial x} + \dfrac {\partial f_z} {\partial x} g_z} \mathbf i\) | Product Rule for Derivatives | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial y} + \dfrac {\partial f_x} {\partial y} g_x + f_y \dfrac {\partial g_y} {\partial y} + \dfrac {\partial f_y} {\partial y} g_y + f_z \dfrac {\partial g_z} {\partial y} + \dfrac {\partial f_z} {\partial y} g_z} \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial z} + \dfrac {\partial f_x} {\partial z} g_x + f_y \dfrac {\partial g_y} {\partial z} + \dfrac {\partial f_y} {\partial z} g_y + f_z \dfrac {\partial g_z} {\partial z} + \dfrac {\partial f_z} {\partial z} g_z} \mathbf k\) |
Then:
\(\ds \mathbf g \times \paren {\nabla \times \mathbf f}\) | \(=\) | \(\ds \mathbf g \times \paren {\paren {\dfrac {\partial f_z} {\partial y} - \dfrac {\partial f_y} {\partial z} } \mathbf i + \paren {\dfrac {\partial f_x} {\partial z} - \dfrac {\partial f_z} {\partial x} } \mathbf j + \paren {\dfrac {\partial f_y} {\partial x} - \dfrac {\partial f_x} {\partial y} } \mathbf k}\) | Definition of Curl Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\map {g_y} {\dfrac {\partial f_y} {\partial x} - \dfrac {\partial f_x} {\partial y} } - \map {g_z} {\dfrac {\partial f_x} {\partial z} - \dfrac {\partial f_z} {\partial x} } } \mathbf i\) | Definition 1 of Vector Cross Product | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\map {g_z} {\dfrac {\partial f_z} {\partial y} - \dfrac {\partial f_y} {\partial z} } - \map {g_x} {\dfrac {\partial f_y} {\partial x} - \dfrac {\partial f_x} {\partial y} } } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\map {g_x} {\dfrac {\partial f_x} {\partial z} - \dfrac {\partial f_z} {\partial x} } - \map {g_y} {\dfrac {\partial f_z} {\partial y} - \dfrac {\partial f_y} {\partial z} } } \mathbf k\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {g_y \dfrac {\partial f_y} {\partial x} - g_y \dfrac {\partial f_x} {\partial y} - g_z \dfrac {\partial f_x} {\partial z} + g_z \dfrac {\partial f_z} {\partial x} } \mathbf i\) | expanding | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {g_z \dfrac {\partial f_z} {\partial y} - g_z \dfrac {\partial f_y} {\partial z} - g_x \dfrac {\partial f_y} {\partial x} + g_x \dfrac {\partial f_x} {\partial y} } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {g_x \dfrac {\partial f_x} {\partial z} - g_x \dfrac {\partial f_z} {\partial x} - g_y \dfrac {\partial f_z} {\partial y} + g_y \dfrac {\partial f_y} {\partial z} } \mathbf k\) |
and similarly:
\(\ds \mathbf f \times \paren {\nabla \times \mathbf g}\) | \(=\) | \(\ds \mathbf f \times \paren {\paren {\dfrac {\partial g_z} {\partial y} - \dfrac {\partial g_y} {\partial z} } \mathbf i + \paren {\dfrac {\partial g_x} {\partial z} - \dfrac {\partial g_z} {\partial x} } \mathbf j + \paren {\dfrac {\partial g_y} {\partial x} - \dfrac {\partial g_x} {\partial y} } \mathbf k}\) | Definition of Curl Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\map {f_y} {\dfrac {\partial g_y} {\partial x} - \dfrac {\partial g_x} {\partial y} } - \map {f_z} {\dfrac {\partial g_x} {\partial z} - \dfrac {\partial g_z} {\partial x} } } \mathbf i\) | Definition 1 of Vector Cross Product | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\map {f_z} {\dfrac {\partial g_z} {\partial y} - \dfrac {\partial g_y} {\partial z} } - \map {f_x} {\dfrac {\partial g_y} {\partial x} - \dfrac {\partial g_x} {\partial y} } } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\map {f_x} {\dfrac {\partial g_x} {\partial z} - \dfrac {\partial g_z} {\partial x} } - \map {f_y} {\dfrac {\partial g_z} {\partial y} - \dfrac {\partial g_y} {\partial z} } } \mathbf k\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {f_y \dfrac {\partial g_y} {\partial x} - f_y \dfrac {\partial g_x} {\partial y} - f_z \dfrac {\partial g_x} {\partial z} + f_z \dfrac {\partial g_z} {\partial x} } \mathbf i\) | expanding | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_z \dfrac {\partial g_z} {\partial y} - f_z \dfrac {\partial g_y} {\partial z} - f_x \dfrac {\partial g_y} {\partial x} + f_x \dfrac {\partial g_x} {\partial y} }\mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial z} - f_x \dfrac {\partial g_z} {\partial x} - f_y \dfrac {\partial g_z} {\partial y} + f_y \dfrac {\partial g_y} {\partial z} } \mathbf k\) |
Next:
\(\ds \paren {\mathbf g \cdot \nabla} \mathbf f\) | \(=\) | \(\ds \paren {g_x \dfrac \partial {\partial x} + g_y \dfrac \partial {\partial y} + g_z \dfrac \partial {\partial z} }\mathbf f\) | Definition of Del Operator, Definition of Dot Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {g_x \dfrac {\partial f_x} {\partial x} + g_y \dfrac {\partial f_x} {\partial y} + g_z \dfrac {\partial f_x} {\partial z} } \mathbf i\) | Definition of Gradient Operator | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {g_x \dfrac {\partial f_y} {\partial x} + g_y \dfrac {\partial f_y} {\partial y} + g_z \dfrac {\partial f_y} {\partial z} } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {g_x \dfrac {\partial f_z} {\partial x} + g_y \dfrac {\partial f_z} {\partial y} + g_z \dfrac {\partial f_z} {\partial z} } \mathbf k\) |
and:
\(\ds \paren {\mathbf f \cdot \nabla} \mathbf g\) | \(=\) | \(\ds \paren {f_x \dfrac \partial {\partial x} + f_y \dfrac \partial {\partial y} + f_z \dfrac \partial {\partial z} } \mathbf g\) | Definition of Del Operator, Definition of Dot Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial x} + f_y \dfrac {\partial g_x} {\partial y} + f_z \dfrac {\partial g_x} {\partial z} } \mathbf i\) | Definition of Gradient Operator | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_y} {\partial x} + f_y \dfrac {\partial g_y} {\partial y} + f_z \dfrac {\partial g_y} {\partial z} } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_z} {\partial x} + f_y \dfrac {\partial g_z} {\partial y} + f_z \dfrac {\partial g_z} {\partial z} } \mathbf k\) |
Combining in pairs:
\(\ds \paren {\mathbf g \cdot \nabla} \mathbf f + \mathbf g \times \paren {\nabla \times \mathbf f}\) | \(=\) | \(\ds \paren {g_y \dfrac {\partial f_y} {\partial x} - g_y \dfrac {\partial f_x} {\partial y} - g_z \dfrac {\partial f_x} {\partial z} + g_z \dfrac {\partial f_z} {\partial x} } \mathbf i + \paren {g_x \dfrac {\partial f_x} {\partial x} + g_y \dfrac {\partial f_x} {\partial y} + g_z \dfrac {\partial f_x} {\partial z} } \mathbf i\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {g_z \dfrac {\partial f_z} {\partial y} - g_z \dfrac {\partial f_y} {\partial z} - g_x \dfrac {\partial f_y} {\partial x} + g_x \dfrac {\partial f_x} {\partial y} } \mathbf j + \paren {g_x \dfrac {\partial f_y} {\partial x} + g_y \dfrac {\partial f_y} {\partial y} + g_z \dfrac {\partial f_y} {\partial z} } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {g_x \dfrac {\partial f_x} {\partial z} - g_x \dfrac {\partial f_z} {\partial x} - g_y \dfrac {\partial f_z} {\partial y} + g_y \dfrac {\partial f_y} {\partial z} } \mathbf k + \paren{g_x \dfrac {\partial f_z} {\partial x} + g_y \dfrac {\partial f_z} {\partial y} + g_z \dfrac {\partial f_z} {\partial z} } \mathbf k\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {g_x \dfrac {\partial f_x} {\partial x} + g_y \dfrac {\partial f_y} {\partial x} + g_z \dfrac {\partial f_z} {\partial x} } \mathbf i\) | Canceling | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {g_x \dfrac {\partial f_x} {\partial y} + g_y \dfrac {\partial f_y} {\partial y} + g_z \dfrac {\partial f_z} {\partial y} } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {g_x \dfrac {\partial f_x} {\partial z} + g_y \dfrac {\partial f_y} {\partial z} + g_z \dfrac {\partial f_z} {\partial z} } \mathbf k\) |
and:
\(\ds \paren {\mathbf f \cdot \nabla} \mathbf g + \mathbf f \times \paren {\nabla \times \mathbf g}\) | \(=\) | \(\ds \paren {f_y \dfrac {\partial g_y} {\partial x} - f_y \dfrac {\partial g_x} {\partial y} - f_z \dfrac {\partial g_x} {\partial z} + f_z \dfrac {\partial g_z} {\partial x} } \mathbf i + \paren {f_x \dfrac {\partial g_x} {\partial x} + f_y \dfrac {\partial g_x} {\partial y} + f_z \dfrac {\partial g_x} {\partial z} } \mathbf i\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_z \dfrac {\partial g_z} {\partial y} - f_z \dfrac {\partial g_y} {\partial z} - f_x \dfrac {\partial g_y} {\partial x} + f_x \dfrac {\partial g_x} {\partial y} }\mathbf j + \paren {f_x \dfrac {\partial g_y} {\partial x} + f_y \dfrac {\partial g_y} {\partial y} + f_z \dfrac {\partial g_y} {\partial z} } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial z} - f_x \dfrac {\partial g_z} {\partial x} - f_y \dfrac {\partial g_z} {\partial y} + f_y \dfrac {\partial g_y} {\partial z} } \mathbf k + \paren {f_x \dfrac {\partial g_z} {\partial x} + f_y \dfrac {\partial g_z} {\partial y} + f_z \dfrac {\partial g_z} {\partial z} } \mathbf k\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial x} + f_y \dfrac {\partial g_y} {\partial x} + f_z \dfrac {\partial g_z} {\partial x} } \mathbf i\) | Canceling | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial y} + f_y \dfrac {\partial g_y} {\partial y} + f_z \dfrac {\partial g_z} {\partial y} } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial z} + f_y \dfrac {\partial g_y} {\partial z} + f_z \dfrac {\partial g_z} {\partial z} } \mathbf k\) |
Finally combining all four terms:
\(\ds \paren {\mathbf g \cdot \nabla} \mathbf f + \paren {\mathbf f \cdot \nabla} \mathbf g + \mathbf g \times \paren {\nabla \times \mathbf f} + \mathbf f \times \paren {\nabla \times \mathbf g}\) | \(=\) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial x} + \dfrac {\partial f_x} {\partial x} g_x + f_y \dfrac {\partial g_y} {\partial x} + \dfrac {\partial f_y} {\partial x} g_y + f_z \dfrac {\partial g_z} {\partial x} + \dfrac {\partial f_z} {\partial x} g_z} \mathbf i\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial y} + \dfrac {\partial f_x} {\partial y} g_x + f_y \dfrac {\partial g_y} {\partial y} + \dfrac {\partial f_y} {\partial y} g_y + f_z \dfrac {\partial g_z} {\partial y} + \dfrac {\partial f_z} {\partial y} g_z} \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial z} + \dfrac {\partial f_x} {\partial z} g_x + f_y \dfrac {\partial g_y} {\partial z} + \dfrac {\partial f_y} {\partial z} g_y + f_z \dfrac {\partial g_z} {\partial z} + \dfrac {\partial f_z} {\partial z} g_z} \mathbf k\) |
$\blacksquare$
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 22$: Miscellaneous Formulas involving $\nabla$: $22.42$