Definition:Vector Cross Product/Definition 1
Jump to navigation
Jump to search
Definition
Let $\mathbf a$ and $\mathbf b$ be vectors in a vector space $\mathbf V$ of $3$ dimensions:
\(\ds \mathbf a\) | \(=\) | \(\ds a_i \mathbf i + a_j \mathbf j + a_k \mathbf k\) | ||||||||||||
\(\ds \mathbf b\) | \(=\) | \(\ds b_i \mathbf i + b_j \mathbf j + b_k \mathbf k\) |
where $\tuple {\mathbf i, \mathbf j, \mathbf k}$ is the standard ordered basis of $\mathbf V$.
The vector cross product, denoted $\mathbf a \times \mathbf b$, is defined as:
- $\mathbf a \times \mathbf b = \begin{vmatrix} \mathbf i & \mathbf j & \mathbf k \\ a_i & a_j & a_k \\ b_i & b_j & b_k \\ \end{vmatrix}$
where $\begin {vmatrix} \ldots \end {vmatrix}$ is interpreted as a determinant.
More directly:
- $\mathbf a \times \mathbf b = \paren {a_j b_k - a_k b_j} \mathbf i - \paren {a_i b_k - a_k b_i} \mathbf j + \paren {a_i b_j - a_j b_i} \mathbf k$
If the vectors are represented as column matrices:
- $\mathbf a = \begin {bmatrix} a_i \\ a_j \\ a_k \end {bmatrix}, \mathbf b = \begin {bmatrix} b_i \\ b_j \\ b_k \end {bmatrix}$
we can express the vector cross product as:
\(\ds \begin {bmatrix} a_i \\ a_j \\ a_k \end{bmatrix} \times \begin{bmatrix} b_i \\ b_j \\ b_k \end {bmatrix}\) | \(=\) | \(\ds \begin {bmatrix} a_j b_k - a_k b_j \\ a_k b_i - a_i b_k \\ a_i b_j - a_j b_i \end {bmatrix}\) |
Also see
- Results about the vector cross product can be found here.
Sources
- 1951: B. Hague: An Introduction to Vector Analysis (5th ed.) ... (previous) ... (next): Chapter $\text {II}$: The Products of Vectors: $6$. Application to Vector Products: $(2.20)$
- 1957: D.E. Rutherford: Vector Methods (9th ed.) ... (previous) ... (next): Chapter $\text I$: Vector Algebra: $\S 3$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 22$: Cross or Vector Product: $22.12$
- 1969: J.C. Anderson, D.M. Hum, B.G. Neal and J.H. Whitelaw: Data and Formulae for Engineering Students (2nd ed.) ... (previous) ... (next): $4.$ Mathematics: $4.1$ Vector Algebra
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): vector product or cross product
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): vector product (cross product)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): vector product (cross product)
- For a video presentation of the contents of this page, visit the Khan Academy.