# Group Homomorphism Preserves Inverses/Proof 1

## Theorem

Let $\struct {G, \circ}$ and $\struct {H, *}$ be groups.

Let $\phi: \struct {G, \circ} \to\struct {H, *}$ be a group homomorphism.

Let:

$e_G$ be the identity of $G$
$e_H$ be the identity of $H$

Then:

$\forall x \in G: \map \phi {x^{-1} } = \paren {\map \phi x}^{-1}$

## Proof

Let $x \in G$.

Then:

 $\displaystyle \map \phi x * \map \phi {x^{-1} }$ $=$ $\displaystyle \map \phi {x \circ x^{-1} }$ Definition of Group Homomorphism $\displaystyle$ $=$ $\displaystyle \map \phi {e_G}$ Definition of Inverse Element $\displaystyle$ $=$ $\displaystyle e_H$ Group Homomorphism Preserves Identity

So, by definition, $\map \phi {x^{-1} }$ is the right inverse of $\map \phi x$.

$\Box$

Similarly:

 $\displaystyle \map \phi {x^{-1} } * \map \phi x$ $=$ $\displaystyle \map \phi {x^{-1} \circ x}$ Definition of Group Homomorphism $\displaystyle$ $=$ $\displaystyle \map \phi {e_G}$ Definition of Inverse Element $\displaystyle$ $=$ $\displaystyle e_H$ Group Homomorphism Preserves Identity

So, again by definition, $\map \phi {x^{-1} }$ is the left inverse of $\map \phi x$.

$\Box$

Finally, as $\map \phi {x^{-1} }$ is both:

a left inverse of $\map \phi x$

and:

a right inverse of $\map \phi x$

it is by definition an inverse.

From Inverse in Group is Unique, $\map \phi {x^{-1} }$ is the only such element.

Hence the result.

$\blacksquare$