Group Homomorphism Preserves Inverses
Theorem
Let $\struct {G, \circ}$ and $\struct {H, *}$ be groups.
Let $\phi: \struct {G, \circ} \to\struct {H, *}$ be a group homomorphism.
Let:
Then:
- $\forall x \in G: \map \phi {x^{-1} } = \paren {\map \phi x}^{-1}$
Hence the notation $\map \phi x^{-1}$ can be used unambiguously.
This can be illustrated using the following commutative diagram:
- $\begin{xy} \[email protected]+2mu@+1em{ G \ar[r]^*{\phi} \ar[d]_*{\iota_G} & H \ar[d]^*{\iota_H} \\ G \ar[r]_*{\phi} & H }\end{xy}$
where $\iota_G$ and $\iota_H$ are the inversion mappings on $G$ and $H$ respectively.
Proof 1
Let $x \in G$.
Then:
\(\ds \map \phi x * \map \phi {x^{-1} }\) | \(=\) | \(\ds \map \phi {x \circ x^{-1} }\) | Definition of Group Homomorphism | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {e_G}\) | Definition of Inverse Element | |||||||||||
\(\ds \) | \(=\) | \(\ds e_H\) | Group Homomorphism Preserves Identity |
So, by definition, $\map \phi {x^{-1} }$ is the right inverse of $\map \phi x$.
$\Box$
Similarly:
\(\ds \map \phi {x^{-1} } * \map \phi x\) | \(=\) | \(\ds \map \phi {x^{-1} \circ x}\) | Definition of Group Homomorphism | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {e_G}\) | Definition of Inverse Element | |||||||||||
\(\ds \) | \(=\) | \(\ds e_H\) | Group Homomorphism Preserves Identity |
So, again by definition, $\map \phi {x^{-1} }$ is the left inverse of $\map \phi x$.
$\Box$
Finally, as $\map \phi {x^{-1} }$ is both:
- a left inverse of $\map \phi x$
and:
- a right inverse of $\map \phi x$
it is by definition an inverse.
From Inverse in Group is Unique, $\map \phi {x^{-1} }$ is the only such element.
Hence the result.
$\blacksquare$
Proof 2
A direct application of Homomorphism to Group Preserves Inverses.
$\blacksquare$
Proof 3
From Group Homomorphism of Product with Inverse, we have:
- $\forall x, y \in G: \map \phi {x \circ y^{-1} } = \map \phi x * \paren {\map \phi y}^{-1}$
Putting $x = e_G$ and $y = x$ we have:
\(\ds \map \phi {x^{-1} }\) | \(=\) | \(\ds \map \phi {e_G \circ x^{-1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {e_G} * \paren {\map \phi x}^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e_H * \paren {\map \phi x}^{-1}\) | Group Homomorphism Preserves Identity | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\map \phi x}^{-1}\) |
$\blacksquare$
Sources
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{II}$: Groups: Morphisms
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: Group Homomorphism and Isomorphism: $\S 60 \alpha$