Hyperbolic Tangent of Complex Number/Formulation 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.


Then:

$\tanh \paren {a + b i} = \dfrac {\tanh a + i \tan b} {1 + i \tanh a \tan b}$

where:

$\tan$ denotes the real tangent function
$\tanh$ denotes the hyperbolic tangent function.


Proof

\(\ds \tanh \paren {a + b i}\) \(=\) \(\ds \dfrac {\sinh a \cos b + i \cosh a \sin b} {\cosh a \cos b + i \sinh a \sin b}\) Hyperbolic Tangent of Complex Number: Formulation 1
\(\ds \) \(=\) \(\ds \dfrac {\tanh a \cos b + i \sin b} {\cos b + i \tanh a \sin b}\) multiplying denominator and numerator by $\dfrac 1 {\cosh a}$
\(\ds \) \(=\) \(\ds \frac {\tanh a + i \tan b} {1 + i \tanh a \tan b}\) multiplying denominator and numerator by $\dfrac 1 {\cos b}$

$\blacksquare$


Also see