Idempotent Semigroup/Examples/Relation induced by Inverse Element/Properties/4

From ProofWiki
Jump to navigation Jump to search

Example of Idempotent Semigroup

Let $\struct {S, \circ}$ be an idempotent semigroup.

Let $\RR$ be the relation on $S$ defined as:

$\forall a, b \in S: a \mathrel \RR b \iff \paren {a \circ b \circ a = a \land b \circ a \circ b = b}$

That is, such that $a$ is the inverse of $b$ and $b$ is the inverse of $a$.


$\RR$ is an equivalence relation.


Proof

Checking in turn each of the criteria for equivalence:


Reflexivity

\(\ds \forall a \in S: \, \) \(\ds a \circ a \circ a\) \(=\) \(\ds a \circ a\) Definition of Idempotent Semigroup
\(\ds \) \(=\) \(\ds a\) Definition of Idempotent Semigroup
\(\ds \leadsto \ \ \) \(\ds a\) \(\RR\) \(\ds a\) Definition of $\RR$

Thus $\RR$ is seen to be reflexive.

$\Box$


Symmetry

\(\ds a\) \(\RR\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds a \circ b \circ a\) \(=\) \(\ds a\) Definition of $\RR$
\(\, \ds \land \, \) \(\ds b \circ a \circ b\) \(=\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds b \circ a \circ b\) \(=\) \(\ds b\) Conjunction is Commutative
\(\, \ds \land \, \) \(\ds a \circ b \circ a\) \(=\) \(\ds a\)
\(\ds \leadsto \ \ \) \(\ds b\) \(\RR\) \(\ds a\) Definition of $\RR$

Thus $\RR$ is seen to be symmetric.

$\Box$


Transitivity

Let $a \mathrel \RR b$ and $b \mathrel \RR c$.

Thus we have:

\(\ds a \circ b \circ a\) \(=\) \(\ds a\)
\(\ds b \circ a \circ b\) \(=\) \(\ds b\)

and:

\(\ds b \circ c \circ b\) \(=\) \(\ds b\)
\(\ds c \circ b \circ c\) \(=\) \(\ds c\)


Let:

\(\ds x\) \(=\) \(\ds c \circ b \circ c\)
\(\ds y\) \(=\) \(\ds c \circ b \circ a\)
\(\ds z\) \(=\) \(\ds a \circ b \circ a\)


We have:

\(\ds b \circ a \circ b\) \(=\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds \paren {b \circ a} \circ \paren {b \circ c}\) \(=\) \(\ds b \circ c\)

and:

\(\ds b \circ c \circ b\) \(=\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds \paren {b \circ c} \circ \paren {b \circ a}\) \(=\) \(\ds b \circ a\)

Hence using Properties of Idempotent Semigroup: $1$:

\(\ds c \circ \paren {b \circ a} \circ c \circ \paren {b \circ c}\) \(=\) \(\ds c \circ \paren {b \circ c}\)
\(\ds c \circ \paren {b \circ c} \circ c \circ \paren {b \circ a}\) \(=\) \(\ds c \circ \paren {b \circ a}\)
\(\ds \leadsto \ \ \) \(\ds x \circ y\) \(=\) \(\ds y\)
\(\ds y \circ x\) \(=\) \(\ds x\)


Then we have:

\(\ds b \circ c \circ b\) \(=\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds \paren {a \circ b} \circ \paren {c \circ b}\) \(=\) \(\ds a \circ b\)

and:

\(\ds b \circ a \circ b\) \(=\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds \paren {c \circ b} \circ \paren {a \circ b}\) \(=\) \(\ds c \circ b\)


Hence using Properties of Idempotent Semigroup: $2$:

\(\ds \paren {a \circ b} \circ a \circ \paren {c \circ b} \circ a\) \(=\) \(\ds \paren {a \circ b} \circ a\)
\(\ds \paren {c \circ b} \circ a \circ \paren {a \circ b} \circ a\) \(=\) \(\ds \paren {c \circ b} \circ a\)
\(\ds \leadsto \ \ \) \(\ds z \circ y\) \(=\) \(\ds z\)
\(\ds y \circ z\) \(=\) \(\ds y\)

Thus we have:

\(\ds x \circ y\) \(=\) \(\ds y\)
\(\ds y \circ x\) \(=\) \(\ds x\)
\(\ds y \circ z\) \(=\) \(\ds y\)
\(\ds z \circ y\) \(=\) \(\ds z\)

Hence by Idempotent Semigroup: Relation induced by Inverse Element: $3$:

$x \mathrel \RR z$

That is:

\(\ds c \circ b \circ c\) \(\RR\) \(\ds a \circ b \circ a\)
\(\ds \leadsto \ \ \) \(\ds c\) \(\RR\) \(\ds a\)

Thus $\RR$ is seen to be transitive.

$\Box$


$\RR$ has been shown to be reflexive, symmetric and transitive.

Hence by definition $\RR$ is an equivalence relation.

$\blacksquare$


Sources