Image of Element under Inverse Mapping/Corollary 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $f: S \to T$ be a mapping such that its inverse $f^{-1}: T \to S$ is also a mapping.


Then:

$\forall x \in S: \map {f^{-1} } {\map f x} = x$


Proof

\(\ds \forall x \in S, y \in T: \, \) \(\ds \map f x\) \(=\) \(\ds y\)
\(\, \ds \iff \, \) \(\ds \map {f^{-1} } y\) \(=\) \(\ds x\) Image of Element under Inverse Mapping
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds \map {f^{-1} } {\map f x}\) \(=\) \(\ds x\) substituting $\map f x$ for $y$

$\blacksquare$


Sources