Image of Element under Inverse Mapping/Corollary 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $f: S \to T$ be a mapping such that its inverse $f^{-1}: T \to S$ is also a mapping.


Then:

$\forall y \in T: \map f {\map {f^{-1} } y} = y$


Proof

\(\ds \forall x \in S, y \in T: \, \) \(\ds \map f x\) \(=\) \(\ds y\)
\(\, \ds \iff \, \) \(\ds \map {f^{-1} } y\) \(=\) \(\ds x\) Image of Element under Inverse Mapping
\(\ds \leadsto \ \ \) \(\ds \forall y \in T: \, \) \(\ds \map f {\map {f^{-1} } y}\) \(=\) \(\ds y\) substituting $\map {f^{-1} } y$ for $x$

$\blacksquare$


Sources