Imaginary Part of Linear Functional is Linear Functional

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a vector space over $\C$.

Let $f : X \to \C$ be a linear functional.

Define $h : X \to \R$ by:

$\map h x = \map \Im {\map f x}$

for each $x \in X$.


Then $f$ is $\R$-linear.


Proof

Let $x, y \in X$ and $\lambda, \mu \in \R$.

Then:

\(\ds \map h {\lambda x + \mu y}\) \(=\) \(\ds \map \Re {\map f {\lambda x + \mu y} }\)
\(\ds \) \(=\) \(\ds \frac 1 {2 i} \paren {\map f {\lambda x + \mu y} - \overline {\map f {\lambda x + \mu y} } }\) Difference of Complex Number with Conjugate
\(\ds \) \(=\) \(\ds \frac 1 {2 i} \paren {\lambda \map f x + \mu \map f y - \overline {\lambda \map f x} - \overline {\mu \map f y} }\) Sum of Complex Conjugates, linearity of $f$
\(\ds \) \(=\) \(\ds \frac 1 {2 i} \paren {\lambda \map f x + \mu \map f y - \lambda \overline {\map f x} - \mu \overline {\map f y} }\) Product of Complex Conjugates
\(\ds \) \(=\) \(\ds \frac \lambda {2 i} \paren {\map f x - \overline {\map f x} } + \frac \mu {2 i} \paren {\map f y - \overline {\map f y} }\)
\(\ds \) \(=\) \(\ds \lambda \map g x + \mu \map g y\)

$\blacksquare$