Product of Complex Conjugates
Jump to navigation
Jump to search
Theorem
Let $z_1, z_2 \in \C$ be complex numbers.
Let $\overline z$ denote the complex conjugate of the complex number $z$.
Then:
- $\overline {z_1 z_2} = \overline {z_1} \cdot \overline {z_2}$
General Result
Let $z_1, z_2, \ldots, z_n \in \C$ be complex numbers.
Let $\overline z$ be the complex conjugate of the complex number $z$.
Then:
- $\ds \overline {\prod_{j \mathop = 1}^n z_j} = \prod_{j \mathop = 1}^n \overline {z_j}$
Proof
Let $z_1 = x_1 + i y_1$ and $z_2 = x_2 + i y_2$, where $x_1, y_1, x_2, y_2 \in \R$.
Then:
\(\ds \overline {z_1 z_2}\) | \(=\) | \(\ds \overline {\paren {x_1 x_2 - y_1 y_2} + i \paren {x_2 y_1 + x_1 y_2} }\) | Definition of Complex Multiplication | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x_1 x_2 - y_1 y_2} - i \paren {x_2 y_1 + x_1 y_2}\) | Definition of Complex Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x_1 x_2 - \paren {-y_1} \paren {-y_2} } + i \paren {x_2 \paren {-y_1} + x_1 \paren {-y_2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x_1 - i y_1} \paren {x_2 - i y_2}\) | Definition of Complex Multiplication | |||||||||||
\(\ds \) | \(=\) | \(\ds \overline {z_1} \cdot \overline {z_2}\) | Definition of Complex Conjugate |
$\blacksquare$
Examples
$3$ Arguments
Let $z_1, z_2, z_3 \in \C$ be complex numbers.
Let $\overline z$ denote the complex conjugate of the complex number $z$.
Then:
- $\overline {z_1 z_2 z_3} = \overline {z_1} \cdot \overline {z_2} \cdot \overline {z_3}$
Sources
- 1957: E.G. Phillips: Functions of a Complex Variable (8th ed.) ... (previous) ... (next): Chapter $\text I$: Functions of a Complex Variable: $\S 2$. Conjugate Complex Numbers
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 1.2$. The Algebraic Theory: $(1.7)$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: Fundamental Operations with Complex Numbers: $55 \ \text {(a)}$
- 1990: H.A. Priestley: Introduction to Complex Analysis (revised ed.) ... (previous) ... (next): $1$ The complex plane: Complex numbers $\S 1.3$ Complex conjugation: $(4)$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): conjugate (of a complex number)