Increasing Alternating Sum of Binomial Coefficients
Jump to navigation
Jump to search
Theorem
Let $n \in \Z$ be an integer.
Then:
- $\ds \sum_{j \mathop = 0}^n \paren {-1}^{n + 1} j \binom n j = 0$
where $\dbinom n k$ denotes a binomial coefficient.
That is:
- $1 \dbinom n 1 - 2 \dbinom n 2 + 3 \dbinom n 3 - \cdots + \paren {-1}^{n + 1} n \dbinom n n = 0$
Proof
\(\ds \sum_{j \mathop = 0}^n \paren {-1}^{n + 1} j \binom n j\) | \(=\) | \(\ds \sum_{j \mathop = 1}^n \paren {-1}^{n + 1} j \binom n j\) | as $0 \dbinom n 0 = 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{j \mathop = 1}^n \paren {-1}^{n + 1} n \binom {n - 1} {j - 1}\) | Factors of Binomial Coefficient | |||||||||||
\(\ds \) | \(=\) | \(\ds n \sum_{j \mathop = 0}^{n - 1} \paren {-1}^{n - 1} \binom {n - 1} j\) | Translation of Index Variable of Summation, and $\paren {-1}^{n + 1} = \paren {-1}^{n - 1}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | Alternating Sum and Difference of Binomial Coefficients for Given n |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 3$: The Binomial Formula and Binomial Coefficients: Properties of Binomial Coefficients: $3.15$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 3$: The Binomial Formula and Binomial Coefficients: Properties of Binomial Coefficients: $3.15.$