Inequality for Ordinal Exponentiation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ and $y$ be ordinals.

Let $x$ be a limit ordinal and let $y > 0$.

Let $\sequence {a_i}$ be a sequence of ordinals that is strictly decreasing on $1 \le i \le n$.

Let $\sequence {b_i}$ be a sequence of natural numbers.


Then:

$\ds \paren {\sum_{i \mathop = 1}^n x^{a_i} \times b_i}^y \le x^{a_1 \mathop \times y} \times \paren {b_1 + 1}$


Proof

By Upper Bound of Ordinal Sum:

$\ds \sum_{i \mathop = 1}^n \paren {x^{a_i} \times b_i} \le x^{a_1} \times \paren {b_1 + 1}$


So:

\(\ds \paren {\sum_{i \mathop = 1}^n x^{a_i} \times b_i}^y\) \(\le\) \(\ds \paren {x^{a_1} \times \paren {b_1 + 1} }^y\) Subset is Right Compatible with Ordinal Exponentiation
\(\ds \) \(=\) \(\ds \paren {x^{a_1} }^y \times \paren {b_1 + 1}\) Ordinal Multiplication via Cantor Normal Form/Limit Base
\(\ds \) \(=\) \(\ds x^{a_1 \mathop \times y} \times \paren {b_1 + 1}\) Ordinal Power of Power

$\blacksquare$




Also see


Sources