# Combination Theorem for Sequences/Real/Sum Rule

(Redirected from Sum Rule for Real Sequences)

## Theorem

Let $\sequence {x_n}$ and $\sequence {y_n}$ be sequences in $\R$.

Let $\sequence {x_n}$ and $\sequence {y_n}$ be convergent to the following limits:

$\ds \lim_{n \mathop \to \infty} x_n = l$
$\ds \lim_{n \mathop \to \infty} y_n = m$

Then:

$\ds \lim_{n \mathop \to \infty} \paren {x_n + y_n} = l + m$

## Proof

Let $\epsilon > 0$ be given.

Then $\dfrac \epsilon 2 > 0$.

We are given that:

$\ds \lim_{n \mathop \to \infty} x_n = l$
$\ds \lim_{n \mathop \to \infty} y_n = m$

By definition of the limit of a real sequence, we can find $N_1$ such that:

$\forall n > N_1: \size {x_n - l} < \dfrac \epsilon 2$

where $\size {x_n - l}$ denotes the absolute value of $x_n - l$

Similarly we can find $N_2$ such that:

$\forall n > N_2: \size {y_n - m} < \dfrac \epsilon 2$

Let $N = \max \set {N_1, N_2}$.

Then if $n > N$, both the above inequalities will be true:

$n > N_1$
$n > N_2$

Thus $\forall n > N$:

 $\ds \size {\paren {x_n + y_n} - \paren {l + m} }$ $=$ $\ds \size {\paren {x_n - l} + \paren {y_n - m} }$ $\ds$ $\le$ $\ds \size {x_n - l} + \size {y_n - m}$ Triangle Inequality for Real Numbers $\ds$ $<$ $\ds \frac \epsilon 2 + \frac \epsilon 2$ $\ds$ $=$ $\ds \epsilon$

Hence the result:

$\ds \lim_{n \mathop \to \infty} \paren {x_n + y_n} = l + m$

$\blacksquare$