Combination Theorem for Sequences/Real/Multiple Rule
< Combination Theorem for Sequences | Real(Redirected from Multiple Rule for Real Sequences)
Jump to navigation
Jump to search
Theorem
Let $\sequence {x_n}$ be a sequences in $\R$.
Let $\sequence {x_n}$ be convergent to the following limit:
- $\ds \lim_{n \mathop \to \infty} x_n = l$
Let $\lambda \in \R$.
Then:
- $\ds \lim_{n \mathop \to \infty} \paren {\lambda x_n} = \lambda l$
Proof
Let $\epsilon > 0$.
We need to find $N$ such that:
- $\forall n > N: \size {\lambda x_n - \lambda l} < \epsilon$
If $\lambda = 0$ the result is trivial.
So, assume $\lambda \ne 0$.
Then $\size \lambda > 0$ from the definition of the absolute value of $\lambda$.
Hence $\dfrac \epsilon {\size \lambda} > 0$.
We have that $x_n \to l$ as $n \to \infty$.
Thus it follows that:
- $\exists N: \forall n > N: \size {x_n - l} < \dfrac \epsilon {\size \lambda}$
That is:
- $\forall n > N: \size \lambda \size {x_n - l} < \epsilon$
But we have:
\(\ds \size \lambda \size {x_n - l}\) | \(=\) | \(\ds \size {\lambda \paren {x_n - l} }\) | Absolute Value of Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {\lambda x_n - \lambda l}\) |
Hence:
- $\ds \lim_{n \mathop \to \infty} \paren {\lambda x_n} = \lambda l$
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 4$: Convergent Sequences: Exercise $\S 4.6 \ (3)$
- 1953: Walter Rudin: Principles of Mathematical Analysis: $3.3b$