Inner Product with Vector is Linear Functional

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\GF$ be a subfield of $\C$.

Let $\struct{ V, \innerprod \cdot \cdot }$ be an inner product space over $\GF$.

Let $v_0 \in V$.


Then the mapping $L: V \to \GF$ defined by:

$\map L v := \innerprod v {v_0}$

is a linear functional.


Proof

Let us directly check the definition of linear functional:

\(\ds \map L {\alpha v + \beta w}\) \(=\) \(\ds \innerprod { \alpha v + \beta w } {v_0}\)
\(\ds \) \(=\) \(\ds \innerprod {\alpha v} {v_0} + \innerprod {\beta w} {v_0}\)
\(\ds \) \(=\) \(\ds \alpha \innerprod v {v_0} + \beta \innerprod w {w_0}\)
\(\ds \) \(=\) \(\ds \alpha \map L v + \beta \map L w\)

$\blacksquare$

Sources