Integer Divisor Results

From ProofWiki
Jump to navigation Jump to search


Let $m, n \in \Z$ be integers.

Let $m \divides n$ denote that $m$ is a divisor of $n$.

The following results all hold:

One Divides all Integers

\(\displaystyle 1\) \(\divides\) \(\displaystyle n\)
\(\displaystyle -1\) \(\divides\) \(\displaystyle n\)

Integer Divides Itself

$n \divides n$

Integer Divides its Negative

\(\displaystyle n\) \(\divides\) \(\displaystyle -n\)
\(\displaystyle -n\) \(\divides\) \(\displaystyle n\)

Integer Divides its Absolute Value

\(\displaystyle n\) \(\backslash\) \(\displaystyle \left \lvert {n}\right \rvert\)
\(\displaystyle \left \lvert {n}\right \rvert\) \(\backslash\) \(\displaystyle n\)


$\left\lvert{n}\right\rvert$ is the absolute value of $n$
$\backslash$ denotes divisibility.

Integer Divides Zero

$n \divides 0$

Divisors of Negative Values

$m \mathrel \backslash n \iff -m \divides n \iff m \divides -n \iff -m \divides -n$