Inverse Laplace Transform of s over s^3 + a^3
Jump to navigation
Jump to search
Theorem
- $\map {\laptrans {\dfrac {e^{a t / 2} } {3 a} \paren {\cos \dfrac {\sqrt 3} 2 a t + \sqrt 3 \sin \dfrac {\sqrt 3} 2 a t - e^{-3 a t / 2} } } } s = \dfrac s {s^3 + a^3}$
where:
- $s$ is a complex number with $\map \Re s > a$
- $\laptrans f$ denotes the Laplace transform of $f$ evaluated at $s$.
Proof
\(\ds \map {\laptrans {\dfrac {e^{a t / 2} } {3 a} \paren {\cos \dfrac {\sqrt 3} 2 a t + \sqrt 3 \sin \dfrac {\sqrt 3} 2 a t - e^{-3 a t / 2} } } } s\) | \(=\) | \(\ds \dfrac 1 {3 a} \map {\laptrans {e^{a t / 2} \cos \dfrac {\sqrt 3} 2 a t} } s + \dfrac {\sqrt 3} {3 a} \map {\laptrans {e^{a t / 2} \sin \dfrac {\sqrt 3} 2 a t} } s - \dfrac 1 {3 a} \map {\laptrans {e^{a t / 2} e^{-3 a t / 2} } } s\) | Linear Combination of Laplace Transforms | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {3 a} \paren {\dfrac {s - a / 2} {\paren {s - a / 2}^2 + \paren {\sqrt 3 a / 2}^2} } + \dfrac {\sqrt 3} {3 a} \map {\laptrans {e^{a t / 2} \sin \dfrac {\sqrt 3} 2 a t} } s - \dfrac 1 {3 a} \map {\laptrans {e^{-a t / 2} } } s\) | Laplace Transform of Exponential times Cosine and simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {3 a} \paren {\dfrac {s - a / 2} {\paren {s - a / 2}^2 + 3 a^2 / 4} } + \dfrac {\sqrt 3} {3 a} \paren {\dfrac {\sqrt 3 a / 2} {\paren {s - a / 2}^2 + \paren {\sqrt 3 a / 2}^2} } - \dfrac 1 {3 a} \map {\laptrans {e^{-a t / 2} } } s\) | Laplace Transform of Exponential times Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {3 a} \paren {\dfrac {s - a / 2} {\paren {s - a / 2}^2 + 3 a^2 / 4} } + \dfrac {\sqrt 3} {3 a} \paren {\dfrac {\sqrt 3 a / 2} {\paren {s - a / 2}^2 + 3 a^2 / 4} } - \dfrac 1 {3 a} \paren {\dfrac 1 {s + a} }\) | Laplace Transform of Exponential | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {3 a} \paren {\dfrac {s - a / 2 + 3 a / 2} {\paren {s - a / 2}^2 + 3 a^2 / 4} - \dfrac 1 {s + a} }\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {3 a} \paren {\dfrac {s + a} {\paren {s^2 - a s + a^2 / 4} + 3 a^2 / 4} - \dfrac 1 {s + a} }\) | multiplying out square | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {3 a} \paren {\dfrac {s + a} {s^2 - a s + a^2} - \dfrac 1 {s + a} }\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {3 a} \paren {\dfrac {\paren {s + a}^2 - \paren {s^2 - a s + a^2} } {\paren {s^2 - a s + a^2} \paren {s + a} } }\) | common denominator | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {3 a} \paren {\dfrac {s^2 + 2 a s + a^2 - s^2 + a s - a^2} {s^3 + a^3} }\) | multiplying out, and Sum of Two Cubes | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac s {s^3 + a^3}\) | simplifying |
$\blacksquare$
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Appendix $\text B$: Table of Special Laplace Transforms: $49.$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 32$: Table of Special Laplace Transforms: $32.73$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 33$: Laplace Transforms: Table of Special Laplace Transforms: $33.73.$