Inverse of Matrix Product

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf {A, B}$ be square matrices of order $n$

Let $\mathbf I$ be the $n \times n$ unit matrix.

Let $\mathbf A$ and $\mathbf B$ be invertible.


Then the matrix product $\mathbf {AB}$ is also invertible, and:

$\paren {\mathbf A \mathbf B}^{-1} = \mathbf B^{-1} \mathbf A^{-1}$


Proof

We are given that $\mathbf A$ and $\mathbf B$ are invertible.

From Product of Matrices is Invertible iff Matrices are Invertible, $\mathbf A \mathbf B$ is also invertible.


By the definition of inverse matrix:

$\mathbf A \mathbf A^{-1} = \mathbf A^{-1} \mathbf A = \mathbf I$

and

$\mathbf B \mathbf B^{-1} = \mathbf B^{-1} \mathbf B = \mathbf I$


Now, observe that:

\(\ds \paren {\mathbf A \mathbf B} \paren {\mathbf B^{-1} \mathbf A^{-1} }\) \(=\) \(\ds \paren {\mathbf A \paren {\mathbf B \mathbf B^{-1} } } \mathbf A^{-1}\) Matrix Multiplication is Associative
\(\ds \) \(=\) \(\ds \paren {\mathbf A \mathbf I} \mathbf A^{-1}\)
\(\ds \) \(=\) \(\ds \mathbf A \mathbf A^{-1}\) Definition of Identity Element
\(\ds \) \(=\) \(\ds \mathbf I\)


Similarly:

\(\ds \paren {\mathbf B^{-1} \mathbf A^{-1} } \paren {\mathbf A \mathbf B}\) \(=\) \(\ds \paren {\mathbf B^{-1} \paren {\mathbf A^{-1} \mathbf A} } \mathbf B\) Matrix Multiplication is Associative
\(\ds \) \(=\) \(\ds \paren {\mathbf B^{-1} \mathbf I} \mathbf B\)
\(\ds \) \(=\) \(\ds \mathbf B^{-1} \mathbf B\) Definition of Identity Element
\(\ds \) \(=\) \(\ds \mathbf I\)

The result follows from the definition of inverse.

$\blacksquare$


Also see


Sources