Inverse of Matrix Product
Jump to navigation
Jump to search
Theorem
Let $\mathbf {A, B}$ be square matrices of order $n$
Let $\mathbf I$ be the $n \times n$ unit matrix.
Let $\mathbf A$ and $\mathbf B$ be nonsingular.
Then the matrix product $\mathbf {AB}$ is also nonsingular, and:
- $\paren {\mathbf A \mathbf B}^{-1} = \mathbf B^{-1} \mathbf A^{-1}$
Proof
We are given that $\mathbf A$ and $\mathbf B$ are nonsingular.
From Product of Matrices is Nonsingular iff Matrices are Nonsingular, $\mathbf A \mathbf B$ is also nonsingular.
By the definition of inverse matrix:
- $\mathbf A \mathbf A^{-1} = \mathbf A^{-1} \mathbf A = \mathbf I$
and
- $\mathbf B \mathbf B^{-1} = \mathbf B^{-1} \mathbf B = \mathbf I$
Now, observe that:
\(\ds \paren {\mathbf A \mathbf B} \paren {\mathbf B^{-1} \mathbf A^{-1} }\) | \(=\) | \(\ds \paren {\mathbf A \paren {\mathbf B \mathbf B^{-1} } } \mathbf A^{-1}\) | Matrix Multiplication is Associative | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\mathbf A \mathbf I} \mathbf A^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf A \mathbf A^{-1}\) | Definition of Identity Element | |||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf I\) |
Similarly:
\(\ds \paren {\mathbf B^{-1} \mathbf A^{-1} } \paren {\mathbf A \mathbf B}\) | \(=\) | \(\ds \paren {\mathbf B^{-1} \paren {\mathbf A^{-1} \mathbf A} } \mathbf B\) | Matrix Multiplication is Associative | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\mathbf B^{-1} \mathbf I} \mathbf B\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf B^{-1} \mathbf B\) | Definition of Identity Element | |||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf I\) |
The result follows from the definition of inverse.
$\blacksquare$
Also see
Sources
- 1998: Richard Kaye and Robert Wilson: Linear Algebra ... (previous) ... (next): Part $\text I$: Matrices and vector spaces: $1$ Matrices: $1.3$ The inverse of a matrix: Proposition $1.2$