Inverse of Square Matrix over Field is Unique

From ProofWiki
Jump to navigation Jump to search


Let $\Bbb F$ be a field, usually one of the standard number fields $\Q$, $\R$ or $\C$.

Let $n \in \Z_{>0}$ be a (strictly) positive integer.

Let $\map \MM n$ denote the matrix space of order $n$ square matrices over $\Bbb F$.

Let $\mathbf B$ be an inverse matrix of $\mathbf A$.

Then $\mathbf B$ is the only inverse matrix of $\mathbf A$.


Consider the algebraic structure $\struct {\map \MM {m, n}, +, \circ}$, where:

$+$ denotes matrix entrywise addition
$\circ$ denotes (conventional) matrix multiplication.

From Ring of Square Matrices over Field is Ring with Unity, $\struct {\map \MM {m, n}, +, \circ}$ is a ring with unity.

Hence a fortiori $\struct {\map \MM {m, n}, +, \circ}$ is a monoid.

The result follows directly from Inverse in Monoid is Unique.