Joachimsthal's Section-Formulae

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $P = \tuple {x_1, y_1}$ and $Q = \tuple {x_2, y_2}$ be points in the Cartesian plane.

Let $R = \tuple {x, y}$ be a point on $PQ$ dividing $PQ$ in the ratio:

$PR : RQ = l : m$


Then:

\(\ds x\) \(=\) \(\ds \dfrac {l x_2 + m x_1} {l + m}\)
\(\ds y\) \(=\) \(\ds \dfrac {l y_2 + m y_1} {l + m}\)


Proof

Joachimsthals-section-formulae.png

Let the ordinates $PL$, $QM$ and $RN$ be constructed for $P$, $Q$ and $R$ respectively.

Then we have:

\(\ds OL\) \(=\) \(\ds x_1\)
\(\ds OM\) \(=\) \(\ds x_2\)
\(\ds ON\) \(=\) \(\ds x\)
\(\ds LP\) \(=\) \(\ds y_1\)
\(\ds MQ\) \(=\) \(\ds y_2\)
\(\ds NR\) \(=\) \(\ds y\)
\(\ds LN : NM = PR : RQ\) \(=\) \(\ds l : m\)
\(\ds \leadsto \ \ \) \(\ds \dfrac {x - x_1} {x_2 - x}\) \(=\) \(\ds \dfrac l m\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \dfrac {l x_2 + m x_1} {l + m}\)
\(\ds y\) \(=\) \(\ds \dfrac {l y_2 + m y_1} {l + m}\)

$\blacksquare$


Source of Name

This entry was named for Ferdinand Joachimsthal.


Historical Note

This result is attributed to Ferdinand Joachimsthal by D.M.Y. Sommerville in his $1924$ work Analytical Conics.

Further reference to Joachimsthal's Section-Formulae cannot be found online, although some considerably more sophisticated results which bear similar names are apparent.


Sources