Join with Complement is Top
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \vee, \wedge, \neg}$ be a Boolean algebra, defined as in Definition 2.
Then:
- $\exists \top \in S: \forall a \in S: a \vee \neg a = \top$
where $\wedge$ denotes the meet operation in $S$.
This element $\top$ is unique for any given $S$, and is named top.
Proof
Let $\exists r, s \in S: r \vee \neg r = a, \ s \vee \neg s = b$
Then:
\(\ds a\) | \(=\) | \(\ds r \vee \neg r\) | by hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {s \vee \neg s} \wedge \paren {r \vee \neg r}\) | Boolean Algebra: Axiom $(\text {BA}_2 \ 5)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {r \vee \neg r} \wedge \paren {s \vee \neg s}\) | Boolean Algebra: Axiom $(\text {BA}_2 \ 1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds s \vee \neg s\) | Boolean Algebra: Axiom $(\text {BA}_2 \ 5)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds b\) | by hypothesis |
Thus, whatever $r$ and $s$ may be:
- $r \vee \neg r = s \vee \neg s$
This unique element can be assigned the symbol $\top$ and named top as required.
$\blacksquare$
Sources
- 1993: Keith Devlin: The Joy of Sets: Fundamentals of Contemporary Set Theory (2nd ed.) ... (previous) ... (next): $\S 1$: Naive Set Theory: $\S 1.8$: Problems: $1 \ \text{B}$