Jordan-Hölder Theorem

From ProofWiki
Jump to navigation Jump to search


Let $G$ be a finite group.

Let $\HH_1$ and $\HH_2$ be two composition series for $G$.


$\HH_1$ and $\HH_2$ have the same length
Corresponding factors of $\HH_1$ and $\HH_2$ are isomorphic.


By the Schreier-Zassenhaus Theorem, two normal series have refinements of equal length whose factors are isomorphic.

But from the definition of composition series, $\HH_1$ and $\HH_2$ have no proper refinements.

Hence any such refinements must be identical to $\HH_1$ and $\HH_2$ themselves.


Source of Name

This entry was named for Marie Ennemond Camille Jordan and Otto Ludwig Hölder.