Kernel of Normal Operator is Kernel of Adjoint

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $H$ be a Hilbert space.

Let $A \in \map B H$ be a normal operator.

Then:

$\ker A = \ker A^*$

where:

$\ker$ denotes kernel
$A^*$ denotes the adjoint of $A$.


Proof

Let $x \in H$ be arbitrary.

Then:

\(\ds x\) \(\in\) \(\ds \ker A\)
\(\ds \leadstoandfrom \ \ \) \(\ds A x\) \(=\) \(\ds \mathbf 0_H\) Definition of Kernel of Linear Transformation
\(\ds \leadstoandfrom \ \ \) \(\ds \gen {A x, A x}\) \(=\) \(\ds 0\) Definition of Inner Product
\(\ds \leadstoandfrom \ \ \) \(\ds \gen {A^*Ax, x}\) \(=\) \(\ds 0\) Definition of Adjoint Linear Transformation
\(\ds \leadstoandfrom \ \ \) \(\ds \gen {A A^* x, x}\) \(=\) \(\ds 0\) Definition of Normal Operator
\(\ds \leadstoandfrom \ \ \) \(\ds \gen {x, AA^*x}\) \(=\) \(\ds 0\) Definition of Inner Product
\(\ds \leadstoandfrom \ \ \) \(\ds \gen {A^*x, A^* x}\) \(=\) \(\ds 0\) Definition of Adjoint Linear Transformation
\(\ds \leadstoandfrom \ \ \) \(\ds A^*x\) \(=\) \(\ds \mathbf 0_H\) Definition of Inner Product
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds \ker A^*\) Definition of Kernel of Linear Transformation

Hence, by definition of set equality:

$\ker A = \ker A^*$

$\blacksquare$