L2 Metric on Closed Real Interval is Metric
Jump to navigation
Jump to search
Theorem
Let $S$ be the set of all real functions which are continuous on the closed interval $\closedint a b$.
Let $d_2: S \times S \to \R$ be the $L^2$ metric on $\closedint a b$:
- $\ds \forall f, g \in S: \map {d_2} {f, g} := \paren {\int_a^b \paren {\map f t - \map g t}^2 \rd t}^{\frac 1 2}$
Then $d_2$ is a metric.
Proof
Proof of Metric Space Axiom $(\text M 1)$
\(\ds \map {d_2} {f, f}\) | \(=\) | \(\ds \paren {\int_a^b \paren {\map f t - \map f t}^2 \rd t}^{\frac 1 2}\) | Definition of $d_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int_a^b 0^2 \rd t}^{\frac 1 2}\) | Definition of Absolute Value | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | Definite Integral of Constant |
So Metric Space Axiom $(\text M 1)$ holds for $d_2$.
$\Box$
Proof of Metric Space Axiom $(\text M 2)$: Triangle Inequality
It is required to be shown:
- $\map {d_2} {f, g} + \map {d_2} {g, h} \ge d_2 \map {d_2} {f, h}$
for all $f, g, h \in S$.
Let:
- $(1): \quad t \in \closedint a b$
- $(2): \quad \map f t - \map g t = \map r t$
- $(3): \quad \map g t - \map h t = \map s t$
Thus we need to show that:
- $\ds \paren {\int_a^b \paren {\map f t - \map g t}^2 \rd t}^{\frac 1 2} + \paren {\int_a^b \paren {\map g t - \map h t}^2 \rd t}^{\frac 1 2} \ge \paren {\int_a^b \paren {\map f t - \map h t}^2 \rd t}^{\frac 1 2}$
We have:
\(\ds \map {d_2} {f, g} + \map {d_2} {g, h}\) | \(=\) | \(\ds \paren {\int_a^b \paren {\map f t - \map g t}^2 \rd t}^{\frac 1 2} + \paren {\int_a^b \paren {\map g t - \map h t}^2 \rd t}^{\frac 1 2}\) | Definition of $d_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int_a^b \paren {\map r t}^2 \rd t}^{\frac 1 2} + \paren {\int_a^b \paren {\map s t}^2 \rd t}^{\frac 1 2}\) | ||||||||||||
\(\ds \) | \(\ge\) | \(\ds \paren {\int_a^b \paren {\map r t + \map s t}^2 \rd t}^{\frac 1 2}\) | Minkowski's Inequality for Integrals | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int_a^b \paren {\map f t - \map g t + \map g t - \map h t}^2 \rd t}^{\frac 1 2}\) | Definition of $\map r t$ and $\map s t$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int_a^b \paren {\map f t - \map h t}^2 \rd t}^{\frac 1 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {d_2} {f, h}\) | Definition of $d_2$ |
So Metric Space Axiom $(\text M 2)$: Triangle Inequality holds for $d_2$.
$\Box$
Proof of Metric Space Axiom $(\text M 3)$
\(\ds \map {d_2} {f, g}\) | \(=\) | \(\ds \paren {\int_a^b \paren {\map f t - \map g t}^2 \rd t}^{\frac 1 2}\) | Definition of $d_p$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int_a^b \paren {\map g t - \map f t}^2 \rd t}^{\frac 1 2}\) | Definition of Absolute Value | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {d_2} {g, f}\) | Definition of $d_2$ |
So Metric Space Axiom $(\text M 3)$ holds for $d_2$.
$\Box$
Proof of Metric Space Axiom $(\text M 4)$
\(\ds \forall t \in \closedint a b: \, \) | \(\ds \map f t - \map g t\) | \(\ne\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\map f t - \map g t}^2\) | \(\ge\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\int_a^b \paren {\map f t - \map g t}^2 \rd t}^{\frac 1 2}\) | \(\ge\) | \(\ds 0\) | Sign of Function Matches Sign of Definite Integral |
From Zero Definite Integral of Nowhere Negative Function implies Zero Function we have that:
- $\map {d_2} {f, g} = 0 \implies f = g$
on $\closedint a b$.
So Metric Space Axiom $(\text M 4)$ holds for $d_2$.
$\blacksquare$
Sources
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $2$: Continuity generalized: metric spaces: $2.2$: Examples: Example $2.2.11$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): metric space
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): metric space