Minkowski's Inequality for Integrals
Jump to navigation
Jump to search
![]() | This article is complete as far as it goes, but it could do with expansion. In particular: Include specific version on real interval for $n = 2$ You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding this information. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Expand}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Theorem
Let $f, g$ be (Darboux) integrable functions.
Let $p \in \R$ such that $p > 1$.
Then:
- $\ds \paren {\int_a^b \size {\map f x + \map g x}^p \rd x}^{1/p} \le \paren {\int_a^b \size {\map f x}^p \rd x}^{1 / p} + \paren {\int_a^b \size {\map g x}^p \rd x}^{1 / p}$
Condition for Equality
- $\ds \paren {\int_a^b \size {\map f x + \map g x}^p \rd x}^{1/p} = \paren {\int_a^b \size {\map f x}^p \rd x}^{1 / p} + \paren {\int_a^b \size {\map g x}^p \rd x}^{1 / p}$
holds if and only if, for all $x \in \closedint a b$:
- $\map g x = c \map f x$
for some $c \in \R_{>0}$.
Proof
Define:
- $q = \dfrac p {p - 1}$
Then:
- $\dfrac 1 p + \dfrac 1 q = \dfrac 1 p + \dfrac {p - 1} p = 1$
It follows that:
\(\ds \int_a^b \size {\map f x + \map g x}^p \rd x\) | \(=\) | \(\ds \int_a^b \size {\map f x} \size {\map f x + \map g x}^{p - 1} \rd x + \int_a^b \size {\map g x} \size {\map f x + \map g x}^{p - 1} \rd x\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \paren {\int_a^b \size {\map f x}^p \rd x}^{1 / p} \paren {\int_a^b \paren {\size {\map f x + \map g x}^{p - 1} }^q \rd x}^{1 / q} + \paren {\int_a^b \size {\map g x}^p \rd x}^{1 / p} \paren {\int_a^b \paren {\size {\map f x + \map g x}^{p - 1} }^q \rd x}^{1 / q}\) | Hölder's Inequality for Integrals (twice) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {\int_a^b \size {\map f x}^p \rd x}^{1 / p} + \paren {\int_a^b \size {\map g x}^p \rd x}^{1 / p} } \paren {\int_a^b \paren {\size {\map f x + \map g x}^{p - 1} }^q \rd x}^{1 / q}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {\int_a^b \size {\map f x}^p \rd x}^{1 / p} + \paren {\int_a^b \size {\map g x}^p \rd x}^{1 / p} } \paren {\int_a^b \size {\map f x + \map g x}^p \rd x}^{1 / q}\) | Power of Power, and by hypothesis: $\paren {p - 1} q = p$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\int_a^b \size {\map f x + \map g x}^p \rd x}^{1 - 1 / q}\) | \(\le\) | \(\ds \paren {\int_a^b \size {\map f x}^p \rd x}^{1 / p} + \paren {\int_a^b \size {\map g x}^p \rd x}^{1 / p}\) | dividing by $\ds \paren {\int_a^b \size {\map f x + \map g x}^p \rd x}^{1 / q}$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\int_a^b \size {\map f x + \map g x}^p \rd x}^{1 / p}\) | \(\le\) | \(\ds \paren {\int_a^b \size {\map f x}^p \rd x}^{1 / p} + \paren {\int_a^b \size {\map g x}^p \rd x}^{1 / p}\) | as $1 - \dfrac 1 q = p$ |
Source of Name
This entry was named for Hermann Minkowski.
Sources
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $3$: Elementary Analytic Methods: $3.2$ Inequalities: Minkowski's Inequality for Integrals: $3.2.13$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 36$: Inequalities: Minkowski's Inequality for Integrals: $36.15$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 37$: Inequalities: Minkowski's Inequality for Integrals: $37.15.$