Lagrange's Formula/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf a$, $\mathbf b$ and $\mathbf c$ be vectors in a vector space $\mathbf V$ of $3$ dimensions.

Then:

$\paren {\mathbf a \times \mathbf b} \times \mathbf c = \paren {\mathbf a \cdot \mathbf c} \mathbf b - \paren {\mathbf b \cdot \mathbf c} \mathbf a$


Proof

\(\ds \mathbf c \times \paren {\mathbf a \times \mathbf b}\) \(=\) \(\ds \paren {\mathbf c \cdot \mathbf b} \mathbf a - \paren {\mathbf c \cdot \mathbf a} \mathbf b\) Lagrange's Formula
\(\ds \leadsto \ \ \) \(\ds \paren {\mathbf a \times \mathbf b} \times \mathbf c\) \(=\) \(\ds -\paren {\paren {\mathbf c \cdot \mathbf b} \mathbf a - \paren {\mathbf c \cdot \mathbf a} \mathbf b}\) Vector Cross Product is Anticommutative
\(\ds \) \(=\) \(\ds -\paren {\mathbf b \cdot \mathbf c} \mathbf a + \paren {\mathbf a \cdot \mathbf c} \mathbf b\) Dot Product Operator is Commutative
\(\ds \) \(=\) \(\ds \paren {\mathbf a \cdot \mathbf c} \mathbf b - \paren {\mathbf b \cdot \mathbf c} \mathbf a\) Real Addition is Commutative

$\blacksquare$


Source of Name

This entry was named for Joseph Louis Lagrange.


Sources