Laplace Transform of Cosine of Root over Root
Jump to navigation
Jump to search
Theorem
- $\laptrans {\dfrac {\cos \sqrt t} {\sqrt t} } = \sqrt {\dfrac \pi s} \, \map \exp {-\dfrac 1 {4 s} }$
where $\laptrans f$ denotes the Laplace transform of the function $f$.
Proof 1
Let $\map f t = \sin \sqrt t$.
Then:
\(\ds \map {f'} t\) | \(=\) | \(\ds \dfrac {\cos \sqrt t} {2 \sqrt t}\) | ||||||||||||
\(\ds \map f 0\) | \(=\) | \(\ds 0\) |
So:
\(\ds \laptrans {\map {f'} t}\) | \(=\) | \(\ds \dfrac 1 2 \laptrans {\dfrac {\cos \sqrt t} {\sqrt t} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds s \map F s - \map f 0\) | Laplace Transform of Derivative | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt \pi} {2 s^{1/2} } \map \exp {-\dfrac 1 {4 s} }\) | Laplace Transform of Sine of Root | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \laptrans {\dfrac {\cos \sqrt t} {\sqrt t} }\) | \(=\) | \(\ds \sqrt {\dfrac \pi s} \map \exp {-\dfrac 1 {4 s} }\) |
$\blacksquare$
Proof 2
Laplace Transform of Cosine of Root over Root/Proof 2
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Laplace Transforms of Special Functions: $5$