Limit of (Cosine (X) - 1) over X at Zero/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \lim_{x \mathop \to 0} \frac {\cos x - 1} x = 0$


Proof

\(\ds \lim_{x \mathop \to 0} \frac {\cos x - 1} x\) \(=\) \(\ds \lim_{x \mathop \to 0} \frac {\paren {\cos x - 1} \paren {\cos x + 1} } {x \paren {\cos x + 1} }\)
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to 0} \frac {\cos^2 x - 1} {x \paren {\cos x + 1} }\)
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to 0} \frac {-\sin^2 x} {x \paren {\cos x + 1} }\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \paren {\lim_{x \mathop \to 0} \frac {\sin x} x} \paren {\lim_{x \mathop \to 0} \frac {-\sin x} {\cos x + 1} }\) Product Rule for Limits of Real Functions
\(\ds \) \(=\) \(\ds 1 \times \paren {\lim_{x \mathop \to 0} \frac{-\sin x} {\cos x + 1} }\) Limit of $\dfrac {\sin x} x$ at Zero
\(\ds \) \(=\) \(\ds \frac {\ds \lim_{x \mathop \to 0} \paren {-\sin x} } {\ds \lim_{x \mathop \to 0} \paren {\cos x + 1} }\) Quotient Rule for Limits of Real Functions
\(\ds \) \(=\) \(\ds \frac 0 2\)
\(\ds \) \(=\) \(\ds 0\)

$\blacksquare$