Limit of Tan X over X at Zero

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \lim_{x \mathop \to 0} \frac {\tan x} x = 1$


Proof 1

By L'Hôpital's Rule:

\(\ds \lim_{x \mathop \to 0} \frac {\tan x} x\) \(=\) \(\ds \lim_{x \mathop \to 0} \frac {\sec^2 x} 1\) Derivative of Tangent Function
\(\ds \) \(=\) \(\ds 1\) Secant of Zero

$\blacksquare$


Proof 2

\(\ds \lim_{x \mathop \to 0} \frac {\tan x} x\) \(=\) \(\ds \lim_{x \mathop \to 0} \frac 1 {\cos x} \frac {\sin x} x\) Definition of Tangent Function
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to 0} \frac 1 {\cos x} \lim_{x \mathop \to 0} \frac {\sin x} x\) Product Rule for Limits of Real Functions
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to 0} \frac {\sin x} x\) Cosine of Zero is One
\(\ds \) \(=\) \(\ds 1\) Limit of $\dfrac {\sin x} x$ at Zero

$\blacksquare$


Proof 3

Let $f$ be the real function defined as:

$\map f x = \sin x$

Let:

$c = \pi$
$h \in \openint 1 {\dfrac \pi 2}$

We have:

\(\ds \map f {c + h}\) \(=\) \(\ds \map \sin {\pi + h}\)
\(\ds \map f c\) \(=\) \(\ds \sin \pi\)
\(\ds \leadsto \ \ \) \(\ds \exists \theta \in \openint 0 1: \, \) \(\ds \dfrac {\map \sin {\pi + h} - \sin \pi} h\) \(=\) \(\ds \map \cos {\pi + \theta h}\) Mean Value Theorem
\(\ds \leadsto \ \ \) \(\ds -\sin h - 1\) \(=\) \(\ds -h \cos \theta h\) Sine of Angle plus Straight Angle, Cosine of Angle plus Straight Angle


Hence:

\(\ds \leadsto \ \ \) \(\ds -h\) \(<\) \(\, \ds -\sin h \, \) \(\, \ds < \, \) \(\ds -h \cos h\) as $0 < \theta < 1$
\(\ds \leadsto \ \ \) \(\ds 1\) \(<\) \(\, \ds \dfrac {\tan h} h \, \) \(\, \ds < \, \) \(\ds \sec h\)


Hence by the Squeeze Theorem for Functions:

$\ds \lim_{h \mathop \to 0} \dfrac {\tan h} h = 1$

The result follows on renaming $h$ to $x$.

$\blacksquare$