Terms in Convergent Series Converge to Zero

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\sequence {a_n}$ be a sequence in any of the standard number fields $\Q$, $\R$, or $\C$.

Suppose that the series $\ds \sum_{n \mathop = 1}^\infty a_n$ converges in any of the standard number fields $\Q$, $\R$, or $\C$.


Then:

$\ds \lim_{n \mathop \to \infty} a_n = 0$


Proof

Let $\ds s = \sum_{n \mathop = 1}^\infty a_n$.

Then $\ds s_N = \sum_{n \mathop = 1}^N a_n \to s$ as $N \to \infty$.

Also, $s_{N - 1} \to s$ as $N \to \infty$.


Thus:

\(\ds a_N\) \(=\) \(\ds \paren {a_1 + a_2 + \cdots + a_{N - 1} + a_N} - \paren {a_1 + a_2 + \cdots + a_{N - 1} }\)
\(\ds \) \(=\) \(\ds s_N - s_{N - 1}\)
\(\ds \) \(\to\) \(\ds s - s = 0 \text{ as } N \to \infty\)

Hence the result.

$\blacksquare$


Also see


Sources