Combination Theorem for Sequences
Theorem
Sequences in Normed Division Ring
Let $\struct {R, \norm {\, \cdot \,} }$ be a normed division ring.
Let $\sequence {x_n}$, $\sequence {y_n} $ be sequences in $R$.
Let $\sequence {x_n}$ and $\sequence {y_n}$ be convergent in the norm $\norm {\, \cdot \,}$ to the following limits:
- $\ds \lim_{n \mathop \to \infty} x_n = l$
- $\ds \lim_{n \mathop \to \infty} y_n = m$
Let $\lambda, \mu \in R$.
Then the following results hold:
Sum Rule
- $\sequence {x_n + y_n}$ is convergent and $\ds \lim_{n \mathop \to \infty} \paren {x_n + y_n} = l + m$
Difference Rule
- $\sequence {x_n - y_n}$ is convergent and $\ds \lim_{n \mathop \to \infty} \paren {x_n - y_n} = l - m$
Multiple Rule
- $\sequence {\lambda x_n}$ is convergent and $\ds \lim_{n \mathop \to \infty} \paren {\lambda x_n} = \lambda l$
Combined Sum Rule
- $\sequence {\lambda x_n + \mu y_n }$ is convergent and $\ds \lim_{n \mathop \to \infty} \paren {\lambda x_n + \mu y_n} = \lambda l + \mu m$
Product Rule
- $\sequence {x_n y_n}$ is convergent to the limit $\ds \lim_{n \mathop \to \infty} \paren {x_n y_n} = l m$
Inverse Rule
Suppose $l \ne 0$.
Then:
- $\exists k \in \N : \forall n \in \N: x_{k + n} \ne 0$
and the subsequence $\sequence { x_{k+n}^{-1} }$ is well-defined and convergent with:
- $\ds \lim_{n \mathop \to \infty} {x_{k + n} }^{-1} = l^{-1}$.
Quotient Rule
Suppose $m \ne 0$.
Then:
- $\exists k \in \N : \forall n \in \N: y_{k + n} \ne 0$
and the sequences:
- $\sequence {x_{k + n} \ {y_{k + n} }^{-1} }$ and $\sequence { {y_{k + n} }^{-1} \ x_{k + n} }$ are well-defined and convergent with:
- $\ds \lim_{n \mathop \to \infty} x_{k + n} \ {y_{k + n} }^{-1} = l m^{-1}$
- $\ds \lim_{n \mathop \to \infty} {y_{k + n} }^{-1} \ x_{k + n} = m^{-1} l$
Real Sequences
Let $\sequence {x_n}$ and $\sequence {y_n}$ be sequences in $\R$.
Let $\sequence {x_n}$ and $\sequence {y_n}$ be convergent to the following limits:
- $\ds \lim_{n \mathop \to \infty} x_n = l$
- $\ds \lim_{n \mathop \to \infty} y_n = m$
Let $\lambda, \mu \in \R$.
Then the following results hold:
Sum Rule
- $\ds \lim_{n \mathop \to \infty} \paren {x_n + y_n} = l + m$
Difference Rule
- $\ds \lim_{n \mathop \to \infty} \paren {x_n - y_n} = l - m$
Multiple Rule
- $\ds \lim_{n \mathop \to \infty} \paren {\lambda x_n} = \lambda l$
Combined Sum Rule
- $\ds \lim_{n \mathop \to \infty} \paren {\lambda x_n + \mu y_n} = \lambda l + \mu m$
Product Rule
- $\ds \lim_{n \mathop \to \infty} \paren {x_n y_n} = l m$
Quotient Rule
- $\ds \lim_{n \mathop \to \infty} \frac {x_n} {y_n} = \frac l m$
provided that $m \ne 0$.
Complex Sequences
Let $\sequence {z_n}$ and $\sequence {w_n}$ be sequences in $\C$.
Let $\sequence {z_n}$ and $\sequence {w_n}$ be convergent to the following limits:
- $\ds \lim_{n \mathop \to \infty} z_n = c$
- $\ds \lim_{n \mathop \to \infty} w_n = d$
Let $\lambda, \mu \in \C$.
Then the following results hold:
Sum Rule
- $\ds \lim_{n \mathop \to \infty} \paren {z_n + w_n} = c + d$
Difference Rule
- $\ds \lim_{n \mathop \to \infty} \paren {z_n - w_n} = c - d$
Multiple Rule
- $\ds \lim_{n \mathop \to \infty} \paren {\lambda z_n} = \lambda c$
Combined Sum Rule
- $\ds \lim_{n \mathop \to \infty} \paren {\lambda z_n + \mu w_n} = \lambda c + \mu d$
Product Rule
- $\ds \lim_{n \mathop \to \infty} \paren {z_n w_n} = c d$
Quotient Rule
- $\ds \lim_{n \mathop \to \infty} \frac {z_n} {w_n} = \frac c d$
provided that $d \ne 0$.