Linear Second Order ODE/y'' - 2 y' + y = 1 over 1 + e^x

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y - 2 y' + y = \dfrac 1 {1 + e^x}$

has a particular solution:

$y = 1 + e^x \ds \int \map \ln {1 + e^{-x} } \rd x$


Proof

\(\ds \paren {D^2 - 2 D + 1} y\) \(=\) \(\ds \dfrac 1 {1 + e^x}\) expressing $(1)$ in a different form
\(\ds \leadsto \ \ \) \(\ds \paren {D^2 - 1}^2 y\) \(=\) \(\ds \dfrac 1 {1 + e^x}\) and in a different form again
\(\ds \leadsto \ \ \) \(\ds \paren {D - 1} z\) \(=\) \(\ds \dfrac 1 {1 + e^x}\) putting $\paren {D - 1} y = z$
\(\ds \leadsto \ \ \) \(\ds \map D {z e^{-x} }\) \(=\) \(\ds \dfrac {e^{-x} } {1 + e^x}\) Solution to Linear First Order ODE with Constant Coefficients: integrating factor $e^x$
\(\ds \) \(=\) \(\ds \dfrac {e^{-2 x} } {1 + e^{-x} }\) multiplying top and bottomof right hand side by $e^{-x}$
\(\ds \leadsto \ \ \) \(\ds z e^{-x}\) \(=\) \(\ds \int \dfrac {e^{-2 x} } {1 + e^{-x} } \rd x\) integrating both sides with respect to $x$
\(\ds \) \(=\) \(\ds -\int \dfrac u {1 + u} \rd u\) Integration by Substitution: setting $e^{-x} = u$
\(\ds \) \(=\) \(\ds -\int 1 - \dfrac 1 {1 + u} \rd u\)
\(\ds \) \(=\) \(\ds -u + \map \ln {1 + u}\) Primitive of Constant, Primitive of Reciprocal
\(\ds \) \(=\) \(\ds -e^{-x} + \map \ln {1 + e^{-x} }\) substituting back for $u$


Then we need to solve:

\(\ds \paren {D - 1}y\) \(=\) \(\ds z\)
\(\ds \leadsto \ \ \) \(\ds \map D {y e^{-x} }\) \(=\) \(\ds z e^{-x}\)
\(\ds \leadsto \ \ \) \(\ds y e^{-x}\) \(=\) \(\ds e^{-x} + \int \map \ln {1 + e^{-x} } \rd x\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds 1 + e^x \int \map \ln {1 + e^{-x} } \rd x\)

and so on.

$\blacksquare$


Sources