Logarithm of Power/Natural Logarithm
Jump to navigation
Jump to search
Theorem
Let $x \in \R$ be a strictly positive real number.
Let $a \in \R$ be a real number such that $a > 1$.
Let $r \in \R$ be any real number.
Let $\ln x$ be the natural logarithm of $x$.
Then:
- $\map \ln {x^r} = r \ln x$
Proof 1
Consider the function $\map f x = \map \ln {x^r} - r \ln x$.
Then from:
- The definition of the natural logarithm
- The Fundamental Theorem of Calculus
- The Power Rule for Derivatives
- The Chain Rule for Derivatives:
- $\forall x > 0: \map {f'} x = \dfrac 1 {x^r} r x^{r-1} - \dfrac r x = 0$
Thus from Zero Derivative implies Constant Function, $f$ is constant:
- $\forall x > 0: \map \ln {x^r} - r \ln x = c$
To determine the value of $c$, put $x = 1$.
From Logarithm of 1 is 0:
- $\ln 1 = 0$
Thus:
- $c = \ln 1 - r \ln 1 = 0$
$\blacksquare$
Proof 2
\(\ds \ln a\) | \(=\) | \(\ds b\) | ||||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds e^b\) | \(=\) | \(\ds a\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {e^b}^c\) | \(=\) | \(\ds a^c\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^{c b}\) | \(=\) | \(\ds a^c\) | Exponential of Product | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \ln e^{c b}\) | \(=\) | \(\ds \ln a^c\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds c b\) | \(=\) | \(\ds \ln a^c\) | Exponential of Natural Logarithm |
By hypothesis, $\ln a = b$.
Multiplying both sides by $c$:
- $c \ln a = c b$
But we proved above that:
- $c b = \ln a^c$
$\blacksquare$
Proof 3
Here we adopt the definition of $\ln x$ to be:
- $\ds \ln x := \int_1^x \dfrac {\d t} t$
\(\ds \map \ln {x^r}\) | \(=\) | \(\ds \int_1^{x^r} \dfrac {\d t} t\) | Definition of Natural Logarithm | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_1^x \dfrac {r t^{r - 1} \rd t} {t^r}\) | Integration by Substitution: $t \mapsto t^r$, $\d t \mapsto r t^{r - 1} \rd t$, $1 \mapsto 1$, $x^r \mapsto x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds r \int_1^x \dfrac {\d t} t\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds r \ln x\) | Definition of Natural Logarithm |
$\blacksquare$
Sources
- For a video presentation of the contents of this page, visit the Khan Academy.