Logarithm of Power/Natural Logarithm/Integer Power

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ be a strictly positive real number.

Let $n \in \R$ be any integer.

Let $\ln x$ be the natural logarithm of $x$.


Then:

$\map \ln {x^n} = n \ln x$


Proof

From Logarithm of Power/Natural Logarithm/Natural Power, the theorem is already proven for positive integers.

Let $j \in \Z_{<0}$.

Let $-j = k \in Z_{>0}$.

Then:

\(\ds 0\) \(=\) \(\ds \ln 1\) Logarithm of 1 is 0
\(\ds \) \(=\) \(\ds \map \ln {x^k x^{-k} }\)
\(\ds \) \(=\) \(\ds \map \ln {x^k} + \map \ln {x^{-k} }\)
\(\ds \) \(=\) \(\ds k \ln x + \map \ln {x^{-k} }\) Logarithm of Power/Natural Logarithm/Natural Power
\(\ds \leadsto \ \ \) \(\ds \map \ln {x^{-k} }\) \(=\) \(\ds -k \ln x\)
\(\ds \leadsto \ \ \) \(\ds \map \ln {x^j}\) \(=\) \(\ds j \ln x\)

$\blacksquare$